Neutrino physics: present and future

Heisenberg-Programm

Forschungsgemeinschaft

Werner Rodejohann (MPIK) **FPCP '18** July 17

Outline

- * Neutrino mixing:
 - what have we learned?
 - what remains to be done?
- Neutrino mass:
 - what have we learned?
 - what remains to be done?
- * New windows:
 - Coherent elastic neutrino-nucleus scattering

Neutrinos still a hot topic

INSPIRE: find title x and date y

Neutrinos oscillate and leptons mix

- * we know that: $0 \neq \Delta m^2_{21} \neq \Delta m^2_{31}$
 - \Rightarrow all three masses different, at least two are non-zero
 - hierarchy mild and neutrino mass much much smaller than all other masses
- * we know that: $U_{PMNS} = U_l^{\dagger} U_v \neq 1$
 - \Rightarrow charged lepton and neutrino mass matrices diagonalized with different matrices; Nature distinguishes v_e , v_{μ} , v_{τ}
 - mixing completely different from quark mixing

Low Energy Paradigm

At low energies, neutrino mass matrix m_{ν} :

$$\mathcal{L} = \frac{1}{2} \nu^T m_{\nu} \nu \quad \text{with} \quad m_{\nu} = U \operatorname{diag}(m_1, m_2, m_3) U^T$$

with PMNS matrix

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P$$

changes number of parameters in SM':

Species	#	Σ		Species	#	Σ
Quarks	10	10	-	Quarks	10	10
Leptons	3	13		Leptons	3 12	13 22
Charge	3	16	\rightarrow	Charge	3	16 25
Higgs	2	18	-	Higgs	2	18 27
strong CP	1	19		strong CP	1	19 28

3 Majorana neutrino paradigm \Rightarrow needs to be tested!

Species	#	Σ
Quarks	10	10
Leptons	3 12	13 22
Charge	3	16 25
Higgs	2	18 27
strong CP	1	19 28
-		14

Low Energy Paradigm

- * 3 Tasks:
 - determine new parameters
 - interpret/explain values of new parameters
 - check for inconsistencies in standard picture

- * We know:
 - θ_{12} and Δm^2_{21}
 - θ_{23} and $|\Delta m^2_{31}|$
 - **θ**₁₃
- * We have limits:
 - *m*₁, *m*₂, *m*₃
- We don't know:
 - $\operatorname{sgn}(\Delta m^2_{31})$
 - δ, α, β

Robust fit results by Valencia (1708.01186), Bari (1804.09678), NuFIT

See exptl. talks by Sekiguchi (T2K), Bhatnagar (NOvA), Wu (reactors)

Werner Rodejohann (MPIK)

FPCP (17/07/18)

- * We know:
 - θ_{12} and Δm^2_{21}
 - θ_{23} and $|\Delta m^2_{31}|$
 - **θ**₁₃
- * We have limits:
 - *m*₁, *m*₂, *m*₃
- We don't know:
 - $\operatorname{sgn}(\Delta m^2_{31})$
 - δ, α, β

FPCP (17/07/18)

Oscillation Parameters

relative 1o uncertainty

parameter	best fit $\pm \; 1\sigma$	
$\Delta m_{21}^2 \ [10^{-5} \mathrm{eV}^2]$	$7.55\substack{+0.20\\-0.16}$	2.4 %
$\begin{array}{l} \left \Delta m_{31}^2 \right \left[10^{-3} \text{eV}^2 \right] \text{(NO)} \\ \left \Delta m_{31}^2 \right \left[10^{-3} \text{eV}^2 \right] \text{(IO)} \end{array}$	$2.50{\pm}0.03\\2.42{}^{+0.03}_{-0.04}$	1.3%
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	$3.20\substack{+0.20\\-0.16}$	5.5%
$\frac{\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}}{\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}}$	$\begin{array}{c} 5.47\substack{+0.20\\-0.30}\\ 5.51\substack{+0.18\\-0.30} \end{array}$	4.7% 4.4%
$\sin^2 \frac{\theta_{13}}{10^{-2}}$ (NO) $\sin^2 \frac{\theta_{13}}{10^{-2}}$ (IO)	$2.160^{+0.083}_{-0.069}\\2.220^{+0.074}_{-0.076}$	3.5%
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${\begin{array}{c} 1.32\substack{+0.21\\-0.15}\\ 1.56\substack{+0.13\\-0.15}\end{array}}$	10% 9%

	Current	JUNO
Δm_{12}^2	~3%	~0.6%
Δm_{23}^2	~5%	~0.6%
$sin^2 \theta_{12}$	~6%	~0.7%
$sin^2 \theta_{23}$	~20%	N/A
$sin^2\theta_{13}$	~14% → ~4%	~15%

Tortola, talk at Neutrino2018

Achievable Precision

Ballet et al., 1612.07275

see talks by Tanaka, Indumathi

Implications of Lepton Mixing

Implications of Lepton Mixing

* Nature seems to prefer large lepton mixing:

$$U_{\rm TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}}\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

generated by rather special mass matrix

$$(m_{\nu})_{\text{TBM}} = \begin{pmatrix} A & B & B \\ \cdot & \frac{1}{2}(A+B+D) & \frac{1}{2}(A+B-D) \\ \cdot & \cdot & \frac{1}{2}(A+B+D) \end{pmatrix}$$

mixing angles independent from masses!!

* completely different from quark sector (GST-relation):

$$M = \begin{pmatrix} 0 & a \\ a & b \end{pmatrix} \Rightarrow \tan \theta_C \simeq \sqrt{\frac{m_d}{m_s}}$$

* preferred solution: Discrete Non-Abelian Symmetries

,								
Group	d	Irr. Repr.'s	Presentation	Туре	L_i	ℓ^c_i	$ u_i^c$	Δ
$D_3 \sim S_3$	6	1, 1', 2	$A^3 = B^2 = (AB)^2 = 1$	A1	9	1 1/ 1//		
D_4	8	$1_1, 1_4, 2$	$A^4 = B^2 = (AB)^2 = 1$	A2	<u>0</u>	\pm, \pm, \pm		$\underline{1}, \underline{1}', \underline{1}'', \underline{3}$
D_7	14	1, 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$	B1	0	1 1/ 1//	0	
A_4	12	1, 1', 1", 3	$A^3 = B^2 = (AB)^3 = 1$	B2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underline{1}, \underline{1}, \underline{1}$	<u>3</u>	1, 3
$A_5 \sim PSL_2(5)$) 60	1, 3, 3', 4, 5	$A^3 = B^2 = (BA)^5 = 1$	C1				
T'	24	1, 1', 1", 2, 2', 2", 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$	C2	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1
S_4	24	1, 1', 2, 3, 3'	$BM: A^4 = B^2 = (AB)^3 = 1$	C3	<u>3</u>			1, 3
			$TB: A^3 = B^4 = (BA^2)^2 = 1$	C4	<u>0</u> <u>0</u>			$\underline{1}, \underline{1}', \underline{1}'', \underline{3}$
$\Delta(27) \sim Z_3 >$	$\triangleleft Z_3 \mid 27$	$1_1, 1_9, 3, \overline{3}$		D1				
$PSL_2(7)$	168	$1,3,\overline{3},6,7,8$	$A^3 = B^2 = (BA)^7 = (B^{-1}A^{-1}BA)^4 = 1$	D2	0	$ \begin{array}{c} $	0	1
$T_7 \sim Z_7 \rtimes Z_7$	J_3 21	$1, 1', \overline{1'}, 3, \overline{3}$	$A^7 = B^3 = 1, \ AB = BA^4$	D3	<u>3</u>	<u>3</u>	<u>3</u>	$\underline{1}'$
				D4				$\underline{1}', \underline{3}$
	T			E	<u>3</u>	<u>3</u>	$\underline{1}, \underline{1}', \underline{1}''$	
	1			F	$\underline{1}, \underline{1}', \underline{1}''$	<u>3</u>	<u>3</u>	$\underline{1} \text{ or } \underline{1}'$
				G	<u>3</u>	1, 1', 1''	$\underline{1}, \underline{1}', \underline{1}''$	

Many possible groups, within each group many models...

\Rightarrow can distinguish only classes of models

Werner Rodejohann (MPIK)

Η

Ι

J

<u>3</u>

<u>3</u>

3

1, 1, 1

 $\underline{1}, \underline{1}, \underline{1}$

1, 1, 1

. . .

1, 1, 1

<u>3</u>

. . .

. . .

. . .

Lesson 1: put different generations in same irrep of group:

$$\begin{pmatrix} L_e \\ L_\mu \\ L_\tau \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L \\ \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L \\ \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \end{pmatrix} \sim 3_f$$

Lesson 2: flavor group broken to different subgroups:

Lesson 1: put different generations in same irrep of group:

Lesson 2: flavor group broken to different subgroups:

Lesson 1: put different generations in same irrep of group:

Werner Rodejohann (MPIK)

FPCP (17/07/18)

How to predict the CP phase

* μ - τ reflection symmetry: $\nu_e \leftrightarrow \nu_e^C$ and $\nu_\mu \leftrightarrow \nu_\tau^C$ (see talk by Deepthi)

$$m_{\nu} = \begin{pmatrix} x & z_1 & z_1^* \\ \cdot & z_2 & y \\ \cdot & \cdot & z_2^* \end{pmatrix} \text{ gives } \delta = \pm \pi/2 \text{ and } \theta_{23} = \pi/4$$

Ma; Grimus, Lavoura; Joshipura, Patel; He, WR, Xu

* combine *CP* and flavor symmetry, typically gives $\delta = \pm \pi/2, \pm \pi, 0$

(implies consistency relation: generalized CP transformation can be interpreted as a representation of an automorphism of the discrete group)

Grimus; Chen; Feruglio, Hagedorn, Ziegler; Holthausen, Schmidt, Lindner; Ding, King, Stuart; Meroni, Petcov; Branco, King, Varzielas,...

Werner Rodejohann (MPIK)

FPCP (17/07/18)

Abelian Flavor Symmetries

- * Less predictive but less complicated: Abelian flavor symmetry, e.g. L_{μ} L_{τ}
 - anomaly-free, has Z' and can explain $(g 2)_{\mu}$
 - can be extended to quark sector to explain anomalies in $B \rightarrow K^*$ $\mu\mu$ and BR($B \rightarrow K\mu\mu$)/BR($B \rightarrow Kee$) [Crivellin, Ambrosio, Heeck, 1501.00993] (making predictions for $h \rightarrow \mu\tau$, LFV, etc.)
 - masses *a* and $\pm b$, $\theta_{23} = \pi/4$, $\theta_{13} = 0$

$$(m_{\nu})^{L_{\mu}-L_{\tau}} = \begin{pmatrix} a & 0 & 0 \\ \cdot & 0 & b \\ \cdot & \cdot & 0 \end{pmatrix}$$

Heeck, WR, 1107.5238

Future of Mass Ordering

see talks by Tanaka, Wu, Indumathi

Masses and Ordering

mild hierarchy in normal ordering: $m_3/m_2 \approx (\Delta m_{atm}^2/\Delta m_{sol}^2)^{\frac{1}{2}} \approx 5$

$$(m_{\nu})_{\rm NH} \sim \begin{pmatrix} \epsilon^2 & \epsilon & \epsilon \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix}$$

strong tuning in inverted ordering: $m_2/m_1 \approx 1 + \frac{1}{2} \Delta m_{sol}^2 / \Delta m_{atm}^2$

$$(m_{\nu})_{\rm IH} \sim \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

plus almost democratic structure of mass matrix

FPCP (17/07/18)

Method	Observable	current	near	far	pro	con
Kurie	$(\Sigma U_{ei} ^2 m_i^2)^{1/2}$	2.3 eV	0.3 eV	0.1 eV?	model-indep.; clean	final; weakest
cosmo	Σm_i	0.25 eV	0.1 eV	0.05 eV?	best; NH/IH	model-dep.; systematics
0νββ	$\Sigma U_{ei}^2 m_i$	0.2 eV	0.05 eV	0.01 eV?	fundamental; NH/IH	model-dep.; NMEs

complete complementarity of observables

Werner Rodejohann (MPIK)

FPCP (17/07/18)

near	futu	re

far future

Cosmological Mass Bounds

95%CL upper bounds on Σ_im_i beyond 7 parameters

Usual suspects:

- extra massless relics
- extra light relics
- spatial curvature
- simplest dynamical DE
- primordial GWs
- primordial tilt running

Even more freedom in:

- modified Einstein Gravity
- interactions in DM sector
- primordial perturbations

[Planck col.] 1502.01589; Di Valentino et al. 1507.06646

Plus: future observation will have to see neutrino mass even in modest extensions!

E.g: 5σ detection when Euclid and SKA are combined!

Double Beta Decay

Werner Rodejohann (MPIK)

FPCP (17/07/18)

Experimental Situation

Experiment	Iso	Iso.		ROI	ROI GRY 6	Esta E	R	3σ disc. sens.		Required			
Experiment	180.	Mass	0	1101	eFV	€sig	C	2	$\hat{T}_{1/2}$	$\hat{m}_{\beta\beta}$	Improveme		nent
		[kg _{iso}]	[keV]	$[\sigma]$	[%]	[%]	$\left[\frac{\mathrm{kg}_{iso}\mathrm{yr}}{\mathrm{yr}}\right]$	$\left[\frac{\mathrm{cts}}{\mathrm{kg}_{iso}\mathrm{ROI}\mathrm{yr}}\right]$	[yr]	$[\mathrm{meV}]$	Bkg	σ	Iso. Mass
LEGEND 200 [61, 62]	$^{76}\mathrm{Ge}$	175	1.3	[-2, 2]	93	77	119	$1.7 \cdot 10^{-3}$	$8.4\cdot 10^{26}$	40–73	3	1	5.7
LEGEND 1k [61, 62]	$^{76}\mathrm{Ge}$	873	1.3	[-2, 2]	93	77	593	$2.8 \cdot 10^{-4}$	$4.5\cdot 10^{27}$	17 - 31	18	1	29
SuperNEMO [68, 69]	$^{82}\mathrm{Se}$	100	51	[-4, 2]	100	16	16.5	$4.9 \cdot 10^{-2}$	$6.1\cdot 10^{25}$	82 - 138	49	2	14
CUPID [58, 59, 70]	82 Se	336	2.1	[-2, 2]	100	69	221	$5.2 \cdot 10^{-4}$	$1.8\cdot 10^{27}$	15 - 25	n/a	6	n/a
CUORE [52, 53]	$^{130}\mathrm{Te}$	206	2.1	[-1.4, 1.4]	100	81	141	$3.1 \cdot 10^{-1}$	$5.4\cdot10^{25}$	66 - 164	6	1	19
CUPID [58, 59, 70]	$^{130}\mathrm{Te}$	543	2.1	[-2, 2]	100	81	422	$3.0 \cdot 10^{-4}$	$2.1\cdot 10^{27}$	11 - 26	3000	1	50
SNO+ Phase I [66, 71]	$^{130}\mathrm{Te}$	1357	82	[-0.5, 1.5]	20	97	164	$8.2 \cdot 10^{-2}$	$1.1\cdot 10^{26}$	46 - 115	n/a	n/a	n/a
SNO+ Phase II [67]	$^{130}\mathrm{Te}$	7960	57	[-0.5, 1.5]	28	97	1326	$3.6 \cdot 10^{-2}$	$4.8\cdot 10^{26}$	22 - 54	n/a	n/a	n/a
KamLAND-Zen 800 [60]	$^{136}\mathrm{Xe}$	750	114	[0, 1.4]	64	97	194	$3.9 \cdot 10^{-2}$	$1.6\cdot 10^{26}$	47 - 108	1.5	1	2.1
KamLAND2-Zen [60]	$^{136}\mathrm{Xe}$	1000	60	[0, 1.4]	80	97	325	$2.1 \cdot 10^{-3}$	$8.0\cdot 10^{26}$	21 - 49	15	2	2.9
nEXO [72]	$^{136}\mathrm{Xe}$	4507	25	[-1.2, 1.2]	60	85	1741	$4.4 \cdot 10^{-4}$	$4.1\cdot 10^{27}$	9 - 22	400	1.2	30
NEXT 100 [64, 73]	$^{136}\mathrm{Xe}$	91	7.8	[-1.3, 2.4]	88	37	26.5	$4.4 \cdot 10^{-2}$	$5.3\cdot10^{25}$	82 - 189	n/a	1	20
NEXT 1.5k [74]	$^{136}\mathrm{Xe}$	1367	5.2	[-1.3, 2.4]	88	37	398	$2.9 \cdot 10^{-3}$	$7.9\cdot 10^{26}$	21 - 49	n/a	1	300
PandaX-III 200 [65]	$^{136}\mathrm{Xe}$	180	31	[-2, 2]	100	35	60.2	$4.2 \cdot 10^{-2}$	$8.3\cdot 10^{25}$	65 - 150	n/a	n/a	n/a
PandaX-III 1k [65]	$^{136}\mathrm{Xe}$	901	10	[-2, 2]	100	35	301	$1.4 \cdot 10^{-3}$	$9.0\cdot 10^{26}$	20 - 46	n/a	n/a	n/a

Will enter IH regime soon!

Multi-isotope determination for

mechanism and NMEs!

Agostini et al, 1705.02996

New Physics in Double Beta Decay

Double Beta Decay is $\Delta L = 2$, not neutrino mass!

New Physics in Double Beta Decay

New Physics in Double Beta Decay

Direct Neutrino Mass Determination

There are 2 running experiments!! 10¹⁰ m(v) = 0 eV-- *m(v)* = 10 eV Counts/0.01eV 2000 Counts/0.07eV sKI 106 1500 10' 1000 LSRUHE TRITIUM NEUTRINO EXPERIMENT (KATRIN) 102 500 INAUGURATION KIT, 11th June 2018 10⁰ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 2.76 2.77 2.78 2.79 2.80 2.81 Energy / keV Energy / keV

- Tritium since May 2018, first νmass data in early 2019...
- (already plans for future versions, aiming at keV-v, exotic interactions,...)

- ECHo (EC on ¹⁶³Ho), spectrum to be measured with low T micro-calorimeters
- * first limit coming soon...

New Physics in Oscillations

- * Various good reasons to expect NP:
 - unitarity violation from new fermions
 - NSIs from new physics
 - new interactions (scalar, tensor, etc.)
 - long-range forces
 - decay, Pseudo-Dirac,...
 - Lorentz/CPT violation: effects ∝ Λ/M_{Pl} with Λ scale of mass generation (seesaw!), in general growing with ν-energy (IC!)
 - light sterile neutrinos...

New Physics in Oscillations

- * Various good reasons to expect NP:
 - unitarity violation from new fermions
 - NSIs from new physics
 - new interactions (scalar, tensor, etc.)
 - long-range forces
 - decay, Pseudo-Dirac,...
 - Lorentz/CPT violation: effects ∝ Λ/M_{Pl} with Λ scale of mass generation (seesaw!), in general growing with ν-energy (IC!)
 - light sterile neutrinos...

$$\mathcal{L} \supset \frac{G_F}{\sqrt{2}} \sum_{q=u,d,e} \overline{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta} \left[\varepsilon_{\alpha\beta}^{qV} \overline{q} \gamma^{\mu} q + \varepsilon_{\alpha\beta}^{qA} \overline{q} \gamma^{\mu} \gamma^5 q \right]$$

- * $\varepsilon \propto c^2/M_X^2 \implies \varepsilon = 0.01$ is TeV-scale physics
- * oscillation effect is *t*-channel forward scattering (q^2 very small), hence *c* can be very small and M_X MeV-ish
- * can prevent experiments from determining parameters...

	_Sta	ndard LMA	LMA LMA	tions
	$ \begin{bmatrix} \varepsilon^{u}_{ee} - \varepsilon^{u}_{\mu\mu} \\ \varepsilon^{u}_{\tau\tau} - \varepsilon^{u}_{\mu\mu} \end{bmatrix} $	[-0.020, +0.456] $[-0.005, +0.130]$	$\oplus [-1.192, -0.802]$ [-0.152, +0.130]	
L =	$\begin{bmatrix} \varepsilon^{u}_{e\mu} \\ \varepsilon^{u}_{e\tau} \\ \varepsilon^{u}_{e\tau} \end{bmatrix}$	[-0.060, +0.049] [-0.292, +0.119] [-0.013, +0.010]	[-0.060, +0.067] [-0.292, +0.336] [-0.013, +0.014]	$\gamma^5 q$]
* $\varepsilon \propto g'^2/M_{Z'}^2$ th	$ \begin{array}{c} \varepsilon_{\mu\tau} \\ \varepsilon_{ee}^{d} - \varepsilon_{\mu\mu}^{d} \\ \varepsilon_{\tau\tau}^{d} - \varepsilon_{\mu\mu}^{d} \end{array} $	$[-0.013, \pm 0.010]$ $[-0.027, \pm 0.474]$ $[-0.005, \pm 0.095]$	$\oplus [-0.013, \pm 0.014]$ $\oplus [-1.232, -1.111]$ $[-0.013, \pm 0.095]$	
 oscillation eff small), hence 	$\begin{bmatrix} \varepsilon^{d}_{e\mu} \\ \varepsilon^{d}_{e\tau} \\ \varepsilon^{d}_{e\tau} \end{bmatrix}$	[-0.061, +0.049] [-0.247, +0.119] [-0.012, +0.000]	[-0.061, +0.073] [-0.247, +0.119] [-0.012, +0.000]	ng (q ² very
 can prevent e 	$ \begin{array}{c} \varepsilon_{\mu\tau} \\ \varepsilon_{ee}^{p} - \varepsilon_{\mu\mu}^{p} \\ \varepsilon_{\tau\tau}^{p} - \varepsilon_{\mu\mu}^{p} \end{array} $	$[-0.012, \pm 0.009]$ $[-0.041, \pm 1.312]$ $[-0.015, \pm 0.426]$	$\oplus [-3.328, -1.958]$ [-0.424, +0.426]	arameters
	$arepsilon^p_{e\mu} \ arepsilon^p_{e au} \ arepsilon^p_{e au} \ arepsilon^p_{\mu au}$	[-0.178, +0.147] [-0.954, +0.356] [-0.035, +0.027]	$\begin{bmatrix} -0.178, +0.178 \end{bmatrix}$ $\begin{bmatrix} -0.954, +0.949 \end{bmatrix}$ $\begin{bmatrix} -0.035, +0.035 \end{bmatrix}$	

Esteban et al., 1805.04530

Kopp, Lindner, Ota, Sato, 0708.0152

Werner Rodejohann (MPIK)

Miranda, Tortola, Valle, hep-ph/0406280

(can also explain small Δm^2 discrepancy in KamLAND/solar and missing upturn of P_{ee})

Werner Rodejohann (MPIK)

Coherent Elastic Neutrino-Nucleus Scattering

Freedmann, PRD9, 1974
$$\frac{d\sigma}{dT} = \frac{\sigma_0^{\text{SM}}}{M} \left(1 - \frac{T}{T_{\text{max}}}\right) \propto N^2$$
$$\sigma_0^{\text{SM}} \equiv \frac{G_F^2 \left[N - (1 - 4s_W^2)Z\right]^2 F^2(q^2)M^2}{4\pi}$$

- * needs E_{ν} below 50 MeV
- * \Rightarrow pion decay or reactors as v-source
- * \Rightarrow low nuclear recoil below few keV
- ★ ⇒ sensitive detectors and smart shielding

Coherent Elastic Neutrino-Nucleus Scattering

Freedmann, PRD9, 1974
$$\frac{d\sigma}{dT} = \frac{\sigma_0^{SM}}{M} \left(1 - \frac{T}{T_{max}}\right) \propto N^2$$

$$\sigma_0^{SM} \equiv \frac{G_F^2 \left[N - (1 - 4s_W^2)Z\right]^2 F^2(q^2)M^2}{4\pi}$$

$$\sigma_0^{SM} = \frac{G_F^2 \left[N - (1 - 4s_W^2)Z\right]^2 F^2(q^2)M^2}{4\pi}$$
6.7 or detection with pulsed pion source at SNS
COHERENT, Science 357 (2017)

Werner Rodejohann (MPIK)

Coherent Elastic Neutrino-Nucleus Scattering

Freedmann, PRD9, 1974

$$\frac{d\sigma}{dT} = \frac{\sigma_0^{\rm SM}}{M} \left(1 - \frac{T}{T_{\rm max}}\right) \propto N$$

$$\sigma_0^{\rm SM} \equiv \frac{G_F^2 \left[N - (1 - 4s_W^2) Z \right]^2 F^2(q^2) M^2}{4\pi}$$

- last missing v-cross section in SM (largest one...)
- helps SN explode
- * neutron charge density \leftrightarrow neutron skin \leftrightarrow NS eos
- ultimate background for DM direct detection
- * measurement of θ_W at low energies
- * NSIs, exotic NC, Z', sterile v,...

Werner Rodejohann (MPIK)

New Physics in Coherent Scattering

if NSIs are present: replace $[N - (1 - 4 s_W^2)Z]^2$ with:

$$Q_{\rm NSI}^2 \equiv 4 \left[N \left(-\frac{1}{2} + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV} \right) + Z \left(\frac{1}{2} - 2s_W^2 + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV} \right) \right]^2 + 4 \sum_{\alpha = \mu, \tau} \left[N (\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) + Z (2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) \right]^2.$$

disfavors LMA-dark solution with more than 3σ

Coloma et al., 1708.02899

New Physics in Coherent Scattering

Example: CONUS-100 like, BG 3/day/kg/keV, exposure: 5 kg yr GW m⁻², sys/stat/thresh.:

New Physics in Coherent Scattering

assume exotic neutral currents:

$$\mathcal{L} \supset \frac{G_F}{\sqrt{2}} \sum_{a=S,P,V,A,T} \overline{\nu} \Gamma^a \nu \left[\overline{\psi_N} \Gamma^a (C_a + \overline{D}_a i \gamma^5) \psi_N \right]$$

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{4\pi} N^2 \left[\xi_S^2 \frac{MT}{2E_\nu^2} + \xi_V^2 \left(1 - \frac{T}{T_{\text{max}}} \right) - 2\xi_V \xi_A \frac{T}{E_\nu} + \xi_A^2 \left(1 - \frac{T}{T_{\text{max}}} + \frac{MT}{E_\nu^2} \right) + \xi_T^2 \left(1 - \frac{T}{T_{\text{max}}} + \frac{MT}{4E_\nu^2} \right) - R \frac{T}{E_\nu} + \mathcal{O} \left(\frac{T^2}{E_\nu^2} \right) \right],$$

Lindner, WR, Xu, 1612.04150

 ξ_V

changes *shape of spectrum*:

Werner Rodejohann (MPIK)

Summary

- Neutrinos still only testable BSM physics
- * PMNS parameters approach CKM-precision
- first hints on CP, mass ordering
- standard paradigm tested on all fronts
- * still new windows open up...

how to "predict" the CP phase: sum-rules

$$U_{\nu} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta/\sqrt{2} & \cos\theta/\sqrt{2} & \sqrt{\frac{1}{2}}\\ \sin\theta/\sqrt{2} & \cos\theta/\sqrt{2} & \sqrt{\frac{1}{2}} \end{pmatrix} \text{ and } U_{\ell} \sim \mathsf{CKM} \quad \begin{array}{l} \text{King et al.; Frampton,}\\ \text{Petcov, WR,...}\\ \Rightarrow \sin^{2}\theta_{12} \simeq \sin^{2}\theta - |U_{e3}| \sin 2\theta \cos \delta \end{array}$$

- * if $\sin^2 \theta = 1/3 = 0.33$ (tri-bimaximal, e.g. A₄, S₄, T')
- * if $\sin^2 \theta = 1/2 = 0.50$ (bimaximal, e.g. D₄)
- * if $\sin^2 \theta = 1/4 = 0.25$ (hexagonal, e.g. D₁₂)
- * if $\tan \theta = 1/\phi$ or $\sin^2 \theta = 0.276$ (GRA, e.g. A₅)

* if $\cos \theta = \phi/2$ or $\sin^2 \theta = 0.346$ (GRB, e.g. D₁₀)

Werner Rodejohann (MPIK)

 \Rightarrow can distinguish only classes of models

how to "predict" the CP phase: sum-rules

$$U_{\nu} = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta/\sqrt{2} & \cos\theta/\sqrt{2} & \sqrt{\frac{1}{2}}\\ \sin\theta/\sqrt{2} & \cos\theta/\sqrt{2} & \sqrt{\frac{1}{2}} \end{pmatrix} \text{ and } U_{\ell} \sim \mathsf{CKM} \quad King \ et \ al.; \ Frampton, \\ Petcov, \ WR, \dots \\ \Rightarrow \sin^{2}\theta_{12} \simeq \sin^{2}\theta - |U_{e3}| \sin 2\theta \cos \delta$$

 \Rightarrow can distinguish only classes of models

FPCP (17/07/18)

Werner Rodejohann (MPIK)

- * Maximal θ_{23} preferred by LBL, slight 1-2 σ shift to > $\pi/4$ by SK
- * LBL prefer $\delta \simeq 3\pi/2$, driven by (too many?) $v_{e;}$ also SK due to sub-GeV *e*-like events
- * normal mass ordering preferred by LBL (tension with reactors) and SK (excess of upward going *e*-like events), $\approx 2\sigma$ effect each, $\approx 3\sigma$ total

see talks by Sekiguchi, Bhatnagar, Wu, Tanaka

Mass Ordering

- weak preference for normal ordering
 - tension in the preferred values of θ_{13} in T2K/NOvA and reactor, found to be stronger for the case of inverted mass ordering
 - tension in the preferred values of Δm^2_{31} in T2K/NOvA and reactor, found to be stronger for the case of inverted mass ordering
 - *e*-like multi-GeV events in SK
 - supported by strongest cosmological mass bounds
 - * BUT: depends on sampling with logarithmic or linear prior, using m_i or $m_{sm} + \Delta m^2$ (*Gariazzo et al., 1801.04946, Hannestad and Schwetz, 1606.04691*)

deSalas et al, 1708.01186

deSalas et al, 1708.01186

SK, 1710.09126

NOvA, 1806.00096

Werner Rodejohann (MPIK)

... probably adds another σ to each hint...

Werner Rodejohann (MPIK)

Expectations of lifetimes

Bayesian discovery probability: discovery sensitivity (value of m_{ee} for which expt. has 50% chance to see it at 3 σ) folded with probability distribution of m_{ee}

Agostini et al, 1705.02996; also Caldwell et al., 1705.01945; also Zhang, Zhou, 1508.05472

FPCP (17/07/18)

Werner Rodejohann (MPIK)

Expectations of lifetimes

Expectations for half-lifes

Ge, WR, Zuber, 1707.07904

For standard scenario, see also Agostini et al, 1705.02996; Caldwell et al., 1705.01945; Zhang, Zhou, 1508.05472; Benato, 1510.01089

However, most alternative mechanisms unrelated to neutrino parameters... ...thus decoupled from cosmology (and direct experiments)! Werner Rodejohann (MPIK)

The usual plot

 typically decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

 typically decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

$$\text{Therefore:}_{T(eV) = T(TeV)}$$
Werner Rodejohann (MPIK)

 typically decouples double beta decay from cosmology and KATRIN

$$\mathcal{A}_{\text{Standard}} = G_F^2 \frac{\langle m \rangle}{q^2} \text{ versus } \mathcal{A}_{\text{Non-Standard}} = \frac{c}{M_X^5}$$

$$\begin{array}{c} \text{Therefore:} \\ T(eV) = T(TeV) \end{array} \Rightarrow \text{Tests with LHC, LFV, etc.} \\ \end{array}$$

Werner Ro

LHC and Double Beta Decay

Complementarity of LHC and 0vBB

Ramsey-Musolf et al., 1508.04444

- * LHC needs $M_S > M_{\psi}$
- * LHC has low sensitivity for small M_{ψ}
- * include jet-fake rate, charge mis-ID,
 QCD corrections in 0vββ, etc.
- $* \Rightarrow$ complementary

QCD Corrections

* naive size $(\alpha_s/4\pi) \ln (M_W/100 \text{ MeV})^2 \approx 10\%$, true for standard diagram

- creates in non (V-A) ⊗ (V-A) short-range mechanisms color non-singlets, Fierzing to singlets gives different operators with vastly different NMEs
- * \Rightarrow can give effect exceeding NME uncertainty...

Mahajan, PRL 112; Gonzalez, Kovalenko, Hirsch, PRD 93; Peng, Ramsey-Musolf, Winslow, PRD 93

Werner Rodejohann (MPIK)

TeV-scale LNV and Baryogenesis

- * Example TeV-scale W_R : leads to washout in early Universe via $e_R e_R \Leftrightarrow W_R W_R$ and $e_R W_R \Leftrightarrow W_R e_R$; processes stay long in equilibrium (*Frere*, *Hambye*, *Vertongen*; *Bhupal Dev*, *Mohapatra*; *Sarkar et al.*)
- * more model-independent (*Deppisch, Harz, Hirsch*):

would need electroweak, resonant, ARS, post-sphaleron baryogenesis

Nuclear Matrix Elements

Deppisch, Suhonen, 1606.02908

Werner Rodejohann (MPIK)

FPCP (17/07/18)

 g_{pp}

 $g_{\rm pp}$
Nuclear Matrix Elements

Werner Rodejohann (MPIK)

QUENCHING??

$$T^{0\nu}_{\frac{1}{2}} \propto g_A^{-4}$$

- * fact in β and $2\nu\beta\beta$
- * truncation of model-space?
- * also in $0\nu\beta\beta$??
 - $q = 10^2$ vs. 10^0 MeV?
 - higher multipolarities?
 - two-body currents?
 - muon capture?
 - SM vs. QRPA

Why look for Lepton Number Violation?

- * L and B accidentally conserved in SM
- * $\mathcal{L} = \mathcal{L}_{SM} + 1/\Lambda \mathcal{L}_5 + 1/\Lambda^2 \mathcal{L}_6 + ..., \text{with } \mathcal{L}_5 = L^c \mathbf{\Phi} \mathbf{\Phi} L \rightarrow m_v v_L^c v_L$
- Baryogenesis: B is violated
- * *B*, *L* often connected in GUTs
- * GUTs have seesaw and Majoranas
- * (B and L non-perturbatively violated by 3 units in SM...)

Lepton Number as important as Baryon Number

Neutrinoless Double Beta Decay

$$(T_{1/2}^{0\nu})^{-1} \propto \begin{cases} a \, M \, \varepsilon \, t & \text{without background} \\ a \, \varepsilon \, \sqrt{\frac{M \, t}{B \, \Delta E}} & \text{with background} \end{cases}$$

first background free result

current limits: $T_{\frac{1}{2}} \gtrsim 10^{26}$ years with exposure of about 100 kg \cdot years

Werner Rodejohann (MPIK)

Werner Rodejohann (MPIK)

Black Box Theorem

Whatever the mechanism, observation of 0vββ implies
 Majorana neutrinos (*Schechter-Valle*, '82)

* is 4-loop diagram \Rightarrow tiny mass (*Dürr*, *Lindner*, *Merle*, 1105.0901)

Non-Standard Interpretations

mechanism	physics parameter	current limit	test
light neutrino exchange	$\left U_{ei}^2 m_i ight $	$0.2 \ \mathrm{eV}$	oscillations, cosmology, neutrino mass
heavy neutrino exchange	$\left rac{S_{ei}^2}{M_i} ight $	$2\times 10^{-8}~{\rm GeV^{-1}}$	LFV, collider
heavy neutrino and RHC	$\left \frac{V_{ei}^2}{M_iM_{W_R}^4}\right $	$4\times 10^{-16}~{\rm GeV^{-5}}$	flavor, collider
Higgs triplet and RHC	$\left \frac{(M_R)_{ee}}{m_{\Delta_R}^2 M_{W_R}^4}\right $	$10^{-15} \text{ GeV}^{-1}$	flavor, collider e^- distribution
$\lambda\text{-mechanism}$ with RHC	$\frac{U_{ei}\tilde{S}_{ei}}{M_{W_R}^2}$	$1.4 \times 10^{-10} \text{ GeV}^{-2}$	flavor, collider, e^- distribution
$\eta\text{-mechanism}$ with RHC	$\tan\zeta \left U_{ei} \tilde{S}_{ei} \right $	6×10^{-9}	flavor, collider, e^- distribution
short-range R	$\Lambda_{\text{SUSY}} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_R}, m_{\chi_i})$	$7 \times 10^{-18} \text{ GeV}^{-5}$	collider, flavor
long-range 🧗	$\left \sin 2\theta^b \lambda_{131}' \lambda_{113}' \left(\frac{1}{m_{\tilde{b}_1}^2} - \frac{1}{m_{\tilde{b}_2}^2} \right) \right \\ \sim \frac{G_F}{q} m_b \frac{\left \lambda_{131}' \lambda_{113}' \right }{\Lambda_{\text{surger}}^3}$	$2 \times 10^{-13} \text{ GeV}^{-2}$ $1 \times 10^{-14} \text{ GeV}^{-3}$	flavor, collider
Majorons	$ \langle g_{\chi} \rangle $ or $ \langle g_{\chi} \rangle ^2$	$10^{-4} \dots 1$	spectrum, cosmology

Werner Rodejohann (MPIK)

Neutrino Mass Observables

$0.11 \pm 0.03 \text{ eV from } 1711.05210$

large effect of v-mass in clustering length of galaxy clusters; much larger effect than on power spectrum; σ_8 larger locally larger than CMB-value; (H₀ still unresolved)

Werner Rodejohann (MPIK)

Connections to future Oscillation Experiments

Sterile Neutrinos

- * are there sterile states (LSND/reactor/etc.) with mass $\Delta m^2 \simeq eV^2$ and mixing $U_{e4} \simeq 0.1$?
- * would make m_{ee} sum of 4 terms with sterile contribution $|U_{e4}|^2 \sqrt{\Delta m^2}$ that can cancel almost completely contribution of IH!
- * usual pheno completely turned around!

- * Most straightforward possibility: add N_R and obtain Dirac mass: $L \Phi N_R \rightarrow m_D \nu_L N_R$
- Gauge invariance allows Majorana mass:
 M_R N_R N_R
- * in total Majorana mass for SM neutrinos: $m_{\nu} \nu_L^c \nu_L$ with $m_{\nu} = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

 $m_{\rm v}$ inverse proportional to scale of origin!

- * Most straightforward possible New representation of SM gauge group $N_R \sim (1,0)$ mass
- * <u>Gauge invariance</u> allows Majorana mass M_R N_R N_R
- * in total Majorana mass for SM neutrinos: $m_v v_L^c v_L$ with $m_v = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

- * Most straightforward possible New representation of SM gauge group $N_R \sim (1,0)$ mass
- * <u>Gauge invariance</u> allows Maiorana measure New energy scale beyond SM
- * in total Majorana mass for SM neutrinos: $m_v v_L^c v_L$ with $m_v = m_D^2 / M_R = m_D \varepsilon$ with $\varepsilon = m_D / M_R = m_{SM} / M_R$

- Most straightforward possible New representation of SM gauge group $N_R \sim (1,0)$ mass
- Gauge invariance allows Maiorana me New energy scale beyond SM
- in total Majorana mass for SM neutrinos: New concept: lepton number violation M_{SM}/M_R

 $m_{\nu} \nu_L^c \nu_L$ with m

 $m_{\rm v}$ inverse proportional to scale of origin!

- **LETTING MADE** A corward possibility: add N_R and obtain Directory, etc. $L \oplus N_R \rightarrow m_D v_L N_R$ **Gauge invariance** allows Majorana mass $M_R \oplus N_L$ (*R. Symmetry, etc.*) $M_R \wedge M_R \oplus L, LR Symmetry, etc.$ in total Majorana mass $M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus N_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus M_R \oplus L$, *LR Symmetry*, etc. $M_P \wedge M_R \oplus M_R \oplus L$, *LR Symmetry*, etc.

Type I Seesaw $m_v = m_D^2 / M_N \propto y^2 / M_N$

actually, does neither fix m_v nor m_D nor M_R needs to be tested or has phenomenology via *"seesaw portal": Lepton-Higgs-Singlet Vertex:* $y \perp \Phi N_R$

Type I Seesaw $m_v = m_D^2 / M_R$

Elias-Miro et al., 1112.3022

Bambhaniya et al., 1611.03827

Type I Seesaw $m_v = m_D^2 / M_R$

Werner Rodejohann (MPIK)

FPCP (17/07/18)

Pathways to Neutrino Mass

similar discussion for all thinkable and unthinkable mass mechanisms

approach	ingredient	quantum number of messenger	L	$m_{ u}$	scale
"SM" (Dirac mass)	RH <i>v</i>	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L$	hv	$h = \mathcal{O}(10^{-12})$
"effective" (dim 5 operator)	new scale + LNV	_	$h \ \overline{L^C} \Phi \Phi L$	$\frac{h v^2}{\Lambda}$	$\Lambda = 10^{14}~{ m GeV}$
"direct" (type II seesaw)	Higgs triplet + LNV	$\Delta \sim (3, -2)$	$h\overline{L^c}\Delta L + \mu\Phi\Phi\Delta$	hv_T	$\Lambda = \frac{1}{h\mu} M_{\Delta}^2$
"indirect 1" (type I seesaw)	RΗ ν + LNV	$N_R \sim (1,0)$	$h\overline{N_R}\Phi L + \overline{N_R}M_RN_R^c$	$\frac{\left(hv\right)^2}{M_R}$	$\Lambda = \frac{1}{h} M_R$
"indirect 2" (type III seesaw)	fermion triplets + LNV	$\Sigma \sim (3,0)$	$h\overline{\Sigma} L\Phi + \mathrm{Tr}\overline{\Sigma} M_{\Sigma}\Sigma$	$\frac{(hv)^2}{M_{\Sigma}}$	$\Lambda = rac{1}{h} M_{\Sigma}$

plus seesaw variants (linear, inverse, double, singular,...)

plus radiative mechanisms

plus higher dimensional operators

plus extra dimensional

plus plus plus

Seesaw Mechanism

- * suppresses neutrino mass for each generation $(m_u \approx m_d \text{ and } m_b \sim m_t \text{ vs. } m_{ve} \ll m_e \text{ and } m_{v\tau} \ll m_{\tau})$
- * little hierarchy in m_{ν} , strong quark-like hierarchy in m_D

Limits on Heavy Neutrinos

$M(W_R) \leftrightarrow V_{\alpha N}$

Deppisch, Dev, Pilaftsis, 1502.06541

Antusch, Cazzato, Fischer, 1612.02728

peak searches, kink searches, displaced vertices, LNV decays,...

see also Atre et al., 0901.3589

Werner Rodejohann (MPIK)

Type I Seesaw $m_v = m_D^2 / M_R$

plus: provides a DM candidate

Leptogenesis

Lepton Flavor Violation

Vacuum stability, naturalness

Werner Rodejohann (MPIK)

Flavor Symmetries

- * Can rule out models by:
 - correlations between angles and phases
 - neutrino mass sum-rules, e.g. $m_1 + m_2 e^{i\alpha} = m_3 e^{i\beta}$
 - LFV if within SUSY or if broken at low scale
 - minimality
 - robustness
 - compatibility with larger frameworks (LR symmetry, Pati-Salam, SU(5), SO(10),...)

Flavor Symmetries

Implications

Perturbations

Gariazzo et al., 1801.04946

logarithmic priors on masses give more importance to smaller masses, where NO/IO difference is large

Tensions: only in solar sector?

Maltoni, Smirnov, 1507.05287

(plus too large matter effect and too large *D*/*N* effect)

Perturbations

- Various sources:
 - VEV misalignment, NLO terms, RG effects,...
- * Frequent feature: $\delta(\theta_{12}), \delta(\delta) > \delta(\theta_{13}), \delta(\theta_{23})$
- effects larger for IH and QD

Example RG enhancement:

[in units of $10^{-5} \tan^2 \beta$]

	NH	ІН	<u>R</u>
$\delta(\theta_{12})$	1	$\Delta m_{ m A}^2/\Delta m_{\odot}^2$	$m_0^2/\Delta m_\odot^2$
$\delta(\theta_{13})$	$\sqrt{\Delta m_{\odot}^2/\Delta m_{ m A}^2}$	1	$m_0^2/\Delta m_{ m A}^2$
$\delta(heta_{23})$	1	1	$m_0^2/\Delta m_{ m A}^2$
$\delta(\delta)$	$\sqrt{\Delta m_{\odot}^2/\Delta m_{ m A}^2}$	$\Delta m_{ m A}^2/\Delta m_{ m \odot}^2$	$m_0^2/\Delta m_{ m A}^2$
$\delta(lpha,eta)$	$\sqrt{\Delta m_{\odot}^2/\Delta m_{ m A}^2}$	$\Delta m_{ m A}^2/\Delta m_{\odot}^2$	$m_0^2/\Delta m_{ m A}^2$
101			EDCD (17/0

large

Perturbations

- Various sources:
 - VEV misalignment, NLO terms, RG effect
- Frequent feature: $\delta(\theta_{12}), \delta(\delta) > \delta(\theta_{12})$
- effects larger for IH and QD

Example RG enhancement:

[in units of $10^{-5} \tan^2 \beta$]

large

Non-Standard Interactions

Miranda, Tortola, Valle, hep-ph/0406280

(can also explain small Δm^2 discrepancy in KamLAND/solar and missing upturn of P_{ee})

Werner Rodejohann (MPIK)

Neutrino Mass guaranteed?

Sprenger et al., 1801.08331

5σ detection when Euclid and SKA are combined!

New Physics in Coherent Scattering

Xun-jie Xu

New Physics in Coherent Scattering

 m_{ϕ} (MeV)

FPCP (17/07/18)

 m_{ϕ} (GeV)