Long-baseline neutrino experiments: status and outlook

Hide-Kazu TANAKA ICRR, University of Tokyo

FPCP 2018 at Hyderabad, July 18, 2018

OUTLINE

- Status of neutrino oscillation measurements
- Latest results
 - (Largely overlap with T2K and NOvA talks yesterday...)
- Next generation experiments
 - Hyper-K and DUNE
- Caveat
 - This talk focuses on *accelerator-based* long-baseline expts
 - This talk may be highly biased by my personal view and apologies if your experiment is not covered in this talk

STATUS OF V OSCILLATIONS

- Mixing between all three neutrino flavors has been observed
 - θ₁₂ ~ 34°
 - θ₁₃ ~ 9°
 - θ₂₃ ~ 45° (maximal?)
- Two mass differences
 - $\Delta m_{21}^2 \sim 7.6 \times 10^{-5} \, eV^2$
 - $|\Delta m^2_{32}| \sim 2.4 \times 10^{-3} eV^2$ (hierarchy?)
- CP phase δ_{CP} remains unknown
- Also need to test "standard" 3-flavor neutrino oscillation paradigm

 $C_{ij} \equiv \cos \theta_{ij}, S_{ij} \equiv \sin \theta_{ij}$

STATUS OF V OSCILLATIONS

- Mixing between all three neutrino flavors has been observed
 - θ₁₂ ~ 34°
 - θ₁₃ ~ 9°
 - θ₂₃ ~ 45° (maximal?)
- Two mass differences
 - $\Delta m_{21}^2 \sim 7.6 \times 10^{-5} \, eV^2$
 - $|\Delta m_{32}^2| \sim 2.4 \times 10^{-3} eV^2$ (hierarchy?)
- CP phase δ_{CP} remains unknown
- Also need to test "standard" 3-flavor neutrino oscillation paradigm

Normal Inverted hierarchy hierarchy $(\Delta m^{2}_{32}>0)$ $(\Delta m^{2}_{32}<0)_{3}$

THE LATEST RESULTS

FROM NEUTRINO 2018 CONFERENCE

T2K results: M. Wascko's slides at Neutrino 2018 NOvA results: M. Sanchez's slides at Neutrino 2018

$l\sigma$ C'EST' 0.45 0.5 0.4

RESULTS: θ_{23}

- **Results from T2K and NOvA** experiments consistent each other
- $0.4 \lesssim \sin^2\theta_{23} \lesssim 0.6$
 - Best fit at upper octant

Latest results: δ_{CP}

T2K results:

•

- Exclude $\delta_{CP}=0$ with >2 σ C.L.
 - Stronger constraint than sensitivity
- Best fit at δ_{CP}~-π/2
- NOvA results:
 - Exclude $\delta_{CP} = +\pi/2$ with $>3\sigma$ (IH)
 - Best fit at $\delta_{CP}=0.17\pi$ (NH)

NEAR FUTURE...

- T2K and NOvA experiments both propose to extend their data taking up around 2024~2026
- $sin\delta_{CP}=0$ can be excluded with 3σ C.L. (T2K)
- MH can be determined with > 3σ C.L. (NOvA)

[Assume true Mass Hierarchy is 'Normal' and $\delta_{CP}=-\pi/2]$

T2K: sinδ_{CP}=0 exclusion sensitivity (arXiv:1609.04111v1) NOvA: Mass Hierarchy sensitivity (Neutrino 2018)

THE NEXT GENERATION

EXPERIMENTAL STRATEGY

 Next generation LBL experiments target CP violation (CPV) and Mass Hierarchy

Hyper-Kamiokande

- Shorter baseline (295km): Earth matter effect insignificant → Focus on CPV
- v beam: Flux peak at 1st oscillation maximum
- → Off-axis narrow band beam
- Mass Hierarchy can be determined with atmospheric v

DUNE/LBNF

- Longer baseline (1300km): Measure matter effect (MH) → Unfold CPV from Earth matter effect through v spectrum shape
- v beam: Cover wide energy range (1st and 2nd maxima)
- → On-axis wide band beam

NEXT GENERATION LBL EXPTS

Hyper-K (Water Č)

NEXT GENERATION LBL EXPTS

Hyper-Kamiokande

260kt

74m

60m

Hyper-Kamiokande

Next generation water Cherenkov detector

- Construct two detectors in stage
- Realize the first detector as soon as possible
- An option of second detector in Korea (PTEP 2018, 6, 1-56)
- The first detector (I tank)
 - Filled with 260kton of ultra-pure water
 - 60m tall x 74 diameter water tank
 - Fiducial mass: 190kton
 - ~I0 x Super-K
 - Photo-coverage: 40% (Inner Detector)
 - 40,000 of **new 50cm PMTs**
 - x2 higher photon sensitivity than SK PMT
- All physics sensitivities of Hyer-K shown in this talk assumes I tank

60m

New 50cm ϕ PMT for Hyper-K

V BEAM FOR HYPER-K

- High quality & high intensity neutrino beam
- 2.5 deg. off-axis narrow band neutrino beam (same as T2K)
- Beam power: I.3MW (before Hyper-K begins)
 - KEK Project Implementation Plan: top priority on 'J-PARC upgrade for Hyper-K'
 - cf. Reached ~500kW for T2K

Number of events/50 MeV	EXPECTED Signal V + V + V + V + V + V + V + V + V + V						
	for $\delta_{\rm CP} = 0$	Signal $\nu_{\mu} \rightarrow \nu_{e} CC$	Wrong sign appearance	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	Beam $\nu_{e}/\overline{\nu}_{e}$ contamination	NC	
	u beam	1,643	15	7	259	134	
	$\overline{ u}$ beam	1,183	206	4	317	196	
	Reconstructed E_V spectra I.3MW x 10 years (10 ⁸ sec), v:v=1; Neutrino mode: Appearance Antineutrino mode: Appearance						

Also sensitive to New Physics (ex. if any additional phase)

sin²2θ₁₃=0.1 Normal Hierarchy

100 H31 ParER-K SENSITIVITY FOR CPV

 $sin\delta_{CP}=0$ exclusion:

- ~8 σ for δ_{CP} =-90° (T2K best fit)
- ~80% coverage of δ_{CP} parameter space with >3 σ
- δ_{CP} resolution:
 - 22° at δ_{CP}=±90°
 - 7° at δ_{CP}=0°, 180°
- Sensitivity studies adopt analysis techniques and systematic uncertainties used in T2K
 - Realistic systematic uncertainties plus expected reduction of error
 - 3~4% syst. err (cf. 6~7% in T2K)

MASS HIERARCHY SENSITIVITY IN HK

- Hyper-K can determine Mass Hierarchy in ~5 years (sin²θ₂₃=0.5) using atmospheric v's, even if MH not determined before Hyper-K era
 - cf. Super-K suggests Normal Hierarchy with ~2σ
 - Phy. Rev. D97, 072001 (2018)

Hyper-K: multi-purpose detector

Comprehensive study of v oscillation

- CPV: 76% of δ space w/ 3 σ , <22° precision
- MH determination for all δ with J-PARC/Atm v
- θ_{23} octant determination at $|\theta_{23}-45^{\circ}|>2^{\circ}$ •
- <1% precision of Δm^{2}_{32}
- Test standard v oscillation scenario w/ acc/atm v

Proton decay 3σ discovery potential

- 1×10^{35} years for $p \rightarrow e^+ \pi^0$
- 3×10^{34} years for $p \rightarrow V K^+$

Supernoval

~20

Solar V

~3.5 MeV

Astrophysical neutrino

Solar v: test standard matter effect (MSW) model

~1 GeV

Supernova V, supernova relic-V

~100

Dark matter neutrinos from Sun, Galaxy, Earth Accelerator V Accelerator V Proton-decay Dark matter V

Sun

Accelerator Atmospheric

Atmospheric v

TeV

20

SEARCH FOR PROTON DECAY

- Hyper-K will explore 10 times longer proton-lifetime than current running experiment
 - ex. $p \rightarrow e^{+}\pi^{0}, p \rightarrow \overline{\nu}K^{+}$
- Many other decay modes can also be searched with an order of magnitude better sensitivity

arXiv:1805.04163v

Design Report (Dated: May 9, 2018)

Hyper-Kamiokande

Inaugural Symposium (MoU), Jan. 2015

- 'Hyper-K Design Report' released
 - arXiv:1805.04163, KEK, ICRR preprints

)4163

ITXIV:1805.

- 'Hyper-K Design Report' released
 - arXiv:1805.04163, KEK, ICRR preprints
- Two host institutes: U. Tokyo/ICRR and KEK/IPNS (MoU for Hyper-K)

Design Report (Dated: May 9, 2018)

Inaugural Symposium (MoU), Jan. 2015

- 'Hyper-K Design Report' released
 - arXiv:1805.04163, KEK, ICRR preprints
- Two host institutes: U. Tokyo/ICRR and KEK/IPNS (MoU for Hyper-K)
- Science Council of Japan selected Hyper-K as one of the top priority large-scale projects in 'Master Plan 2017'

Homeselande and a set of the se

- 'Hyper-K Design Report' released
 - arXiv:1805.04163, KEK, ICRR preprints
- Two host institutes: U. Tokyo/ICRR and KEK/IPNS (MoU for Hyper-K)
- Science Council of Japan selected Hyper-K as one of the top priority large-scale projects in 'Master Plan 2017'
- MEXT (funding agency) selected Hyper-K in the 'Roadmap 2017'

- 'Hyper-K Design Report' released
 - arXiv:1805.04163, KEK, ICRR preprints
- Two host institutes: U. Tokyo/ICRR and KEK/IPNS (MoU for Hyper-K)
- Science Council of Japan selected Hyper-K as one of the top priority large-scale projects in 'Master Plan 2017'
- MEXT (funding agency) selected Hyper-K in the 'Roadmap 2017'
- U.Tokyo launched 'Next-Generation Neutrino Science Organization' (NNSO) for Hyper-K construction

- 'Hyper-K Design Report' released
 - arXiv:1805.04163, KEK, ICRR preprints
- Two host institutes: U. Tokyo/ICRR and KEK/IPNS (MoU for Hyper-K)
- Science Council of Japan selected Hyper-K as one of the top priority large-scale projects in 'Master Plan 2017'
- MEXT (funding agency) selected Hyper-K in the 'Roadmap 2017'
- U.Tokyo launched 'Next-Generation Neutrino Science Organization' (NNSO) for Hyper-K construction
- U.Tokyo making all efforts to get Hyper-K funded, aiming to begin the detector construction in JFY2019 and begin the operation in JFY2026

Hyper-K proto-collaboration

- ~300 collaborators
- 73 institutions from
 15 countries
- ~75% of collaborators from abroad

Open for new collaborators

DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE/LBNF

E. Worcester's slides at Neutrino 2018 J. Bian's slides at ICHEP 2018 UCIRVINE

LBNF BEAM

- 60-120 GeV proton beam
- 1.2 MW proton beam power @80GeV
 - cf. NuMI achieved 700kW for NOvA
 - Upgradeable to 2.4 MW
 - DUNE sensitivity studies adopt the beam power upgrade
- Reference design similar to NuMI, optimized to improve sensitivity to oscillation measurement

UCIRVINE DUNE

DUNE DETECTOR

- Large underground Liquid Argon (LAr) Time Projection Chamber
 - Single- and dual-phase LAr TPC
 - Total fiducial mass of 40 kton
 - 10 kton × 4 modules
- Detector modules installed in stages
 - Start with 20kton (FV) and add other 20kton in 4 years
 - 1st modules single-phase
- Two prototype TPCs under construction for a test-beam at CERN (770ton LAr each)

DUNE SENSITIVITY FOR CPV AND MH

- Mass Hierarchy determination at >5σ
- 75% coverage for 3σ CPV discovery
- $7^{\circ} \sim 15^{\circ} \delta_{CP}$ resolution
- * Efficiency tuned using hand scan results
- * Syst. uncertainties approximated using normalization uncertainties

JUAUUS/PIAII VI VINL

Quoted from J. Bian's slides at ICHEP 2018

- 2017: Far site construction begins
- 2018: Start to operate full-scale protoDUNE at CERN
- 2019: DUNE Technical Design Report ready for funding agencies
- 2019: Main Cavern Excavation
- 2020: Far Detector fabrication facilities ready
- 2022: Start to install FI
- 2024: Two FD modules operational
- 2026: Beam on with t

SUMMARY OF CPV SENSITIVITY

- Significance for sinδ=0 exclusion
- Hyper-K and DUNE both 5σ sensitivity near δ =-90° after 10ys operation
- Next generation expts have way better sensitivity than current running expts

Hyper-K DR: arXiv1805.04163
DUNE CDR: arXiv:1512.06148

SUMMARY

- Current running LBL experiments (T2K, NOvA) playing a major role to improve our understanding of neutrino oscillation
 - Maybe, T2K and NOvA are finding a hint of neutrino CP violation and Mass Hierarchy?
 - Non-accelerator-based experiments (Super-K, IceCUBE, ORCA, JUNO, INO, ...) also have a great potential for Mass Hierarchy determination
- Next generation LBL experiments, Hyper-K and DUNE, aim to reveal a full picture of v oscillation
 - Primary targets: CPV and Mass Hierarchy
 - Aim to start data taking with v beam in 2026
 - Significant complimentarily
- Wide physics topics, many discovery potential
 - Proton decay, astrophysical neutrino, ...

BACK UP

Detector performance

- Large mass (~10 x Super-K FV)
 - Statistics is always critical
- Excellent particle ID (e/μ)
 - Mis-identification <1%
- Energy resolution $e/\mu \sim 3\%$
- Quasi-elastic is dominant (sub-GeV)
 → Clean one-ring event

$p \rightarrow e^{+}\pi^{0}$ search in Hyper-K

• "Background free" meas. of proton decay

- 0.06 Bkg events / Mt·year
- Bkg atm-V events are largely reduced by 'neutron-tag': eff.~70% with new PMT

 $n+p\rightarrow d+\gamma$ (2.2MeV)

Great discovery potential 3σ discovery sensitivity reaches $T_p/Br=10^{35}$ years

$p \rightarrow vK^+$ search in Hyper-K

K⁺ decay time (nsec)

BG

2

ο

- Identify K⁺ by its decaying products
- $K^+ \rightarrow \mu + \nu$ (Br: 64%)
 - 236MeV/c μ+
 - de-excitation γ from ¹⁵O^{*} $(6 MeV \gamma)$
- $K^+ \rightarrow \pi^+ \pi^0$ (Br: 21%)
 - 205MeV/c π^0 & π^+ back-toback
- New PMT improves signal and background efficiencies
- Other decay modes, $I+\omega$, $\rho, \eta, x | 0$ improved than SK

Predictions & experiments for p-decay

Korean option for 2nd tank

