Measurement of CP Violation in $B^0_s \rightarrow J/\psi \phi$ decays

Konstantin Gizdov

University of Edinburgh On behalf of the LHCb Collaboration

16^{th} Conference on Flavor Physics and CP Violation $$14^{th}$-}18^{th}$ Jul 2018

CP Violation

- CP Violation is a necessary condition for baryon asymmetry in the Universe [A. D. Sakharov, JETP Lett. 5, 24-27 (1967)]
- Present in the Standard Model, but too small by 10¹⁰ to explain asymmetry
- Heavy-quark hadrons are excellent place to search for new sources of CPV

LHCb Detector Layout

- Interaction VErtex LOcator ($\varepsilon_{track} \approx 96\%$)
- Ring-Imaging Cherenkov ($\varepsilon_{PID}(K) \approx 95\%$) (*MisID*(K $\rightarrow \pi$) $\approx 5\%$)
- High-granularity Muon $(\varepsilon_{PID}(\mu) \approx 97\%)$ $(MisID(\mu \rightarrow \pi) \approx 3\%)$
- 4% of solid angle = 40% of heavy quark σ
- Decay time resolution: 45 fs
- Signature: detached $\mu\mu$
- nPVs: ${\sim}2$

Measurement of CPV in $B_s^0 \rightarrow J/\psi \phi$

Experimental timeline

- Run 2 is almost finished
- Upgrade 1 is about to start
- End Run 3 \rightarrow End Run 5 LHCb: 23 fb⁻¹ \rightarrow 300 fb⁻¹
- LHCb may be the only large-scale flavour physics experiment operating in the HL-LHC era.

Impact of Upgrade 2 comparable to moving from 14TeV to 27TeV for on-shell production!

CP Violation in Mixing

ϕ_s (CPV in interference of mixing and decay)

- φ_s : phase difference between amplitudes w/ and w/o oscillation in b → cc̄s decays
 Sensitive probe of NP in B⁰_s mixing and decay
- $\phi_s{}^{SM} = -0.0365 \pm 0.0013 \text{ rad}$

6/16

FPCP, 14th Jul 2018

Determining ϕ_s with $B_s^0 \rightarrow J/\psi \phi$ experimentally

• ${\rm B}^0_{\rm s}
ightarrow {\rm J}\!/\!\psi\,\phi$ is the golden mode for measuring $\phi_{\rm s}$

- Measure ϕ_s , $\Delta \Gamma_s$, Γ_s
- Final state is a mixture of CP-even/CP-odd, requires angular analysis to disentangle $CP|J/\psi\phi\rangle_\ell = (-1)^\ell |J/\psi\phi\rangle_\ell$
- $\bullet~\mbox{Good tagging performance to resolve } {\rm B}^0_{\rm s}$ flavour at production
- High decay-time resolution to see fast $\mathrm{B}^0_{\mathrm{s}}$ oscillation and determine Δm_s
- Flavour-tagged time-dependent angular fit
- Robust understanding and modelling of background and acceptance effects

- $\bullet~$ Crucial to tag ${\rm B}^0_{\rm s}$ flavour at production
- Use information in the event (e.g., charge of K associated with b hadronisation) to tag B_s^0
- Calibrate tagging algorithm response using modes with known flavour (e.g., $B^+ \rightarrow J/\psi K^+$, $B_s^0 \rightarrow D_s^- \pi^+$)
- Great proper time resolution

Tagging power: $\varepsilon D^2 \sim 4\%$

arepsilon - tag efficiency $D^2 \equiv (1-2\omega)^2 \qquad \omega$ - mistag probability

LHCb optimized for $\phi_{\rm s}$

- Including more statistics from m(K⁺K⁻) > m(φ)
- Determine resonant structure and $\phi_{\rm s}$, $\Gamma_{\rm s}$ and $\Delta\Gamma_{\rm s}$ in fit to m(K⁺K⁻)
- Combination with $B_s^0 \rightarrow J/\psi \phi$ improves ϕ_s precision by over 7%

Fit Results

 Main systematic uncertainty Angular acceptance (MC size): ±0.004 rad

10 / 16

K. Gizdov (University of Edinburgh)

Measurement of CPV in $B_s^0 \rightarrow J/\psi \phi$

FPCP, 14th Jul 2018

	Final	LHCb	Run I	results
--	-------	------	-------	---------

$J/\psi K^+K^-$ in ϕ region	-58 \pm 59 \pm 6 mrad	[PRL 114 (2015) 041801]
$J/\psi\mathrm{K^+K^-}$ in high-mass $\mathrm{K^+K^-}$ region	$119\pm107\pm34$ mrad	[JHEP 08 (2017) 037]
${ m J}/\psi\pi^+\pi^-$	70 \pm 68 \pm 8 mrad	[PLB 713 (2012) 378]
Overall	1 ± 37 mrad	

• $B^0_s \to J\!/\!\psi\, \mathrm{K}^+\mathrm{K}^-$ gives the lowest uncertainties

11/16

- LHCb dominates world average
- Results consistent with SM prediction but still a lot of room for NP
- Uncertainty is statistically limited
- At 300 fb^{-1}: $\sigma^{\textit{stat}}(\phi_{\rm s}) \sim$ 4 mrad from ${\rm B_{s}^{0}} \rightarrow J\!/\psi\,\phi$ only

Penguin Pollution

- With increasing precision crucial to understand penguin contribution
- Can use U-spin and SU(3) related modes, where penguin not suppressed [S. Faller, R. Fleischer, M. Jung, T. Mannel, arXiv:0809.0842]

$$\begin{split} \mathbf{b} \to \mathbf{c} \mathbf{\bar{c}s} \text{ amplitude } (i = 0, \|, \bot): \quad \mathcal{A}'_i(\mathbf{b} \to \mathbf{c} \mathbf{\bar{c}s}) = (1 - \frac{\lambda^2}{2})\mathcal{A}'_i(1 + \varepsilon \mathbf{a}'_i e^{i\theta'_i} e^{i\gamma}) \\ \mathbf{b} \to \mathbf{c} \mathbf{\bar{c}d} \text{ amplitude: } \quad \mathcal{A}_i(\mathbf{b} \to \mathbf{c} \mathbf{\bar{c}d}) = -\lambda \mathcal{A}_i(1 + \mathbf{a}_i e^{i\theta_i} e^{i\gamma}) \end{split}$$

SU(3): $a'_i = a_i, \theta'_i = \theta_i$. Extract $\Delta \phi_s(a_i, \theta_i)$ and $\Delta \beta^{peng}(a_i, \theta_i)$ from t to CP parameters and BF. $\lambda \equiv |V_{us}| \approx 0.225, \epsilon \equiv \frac{\lambda^2}{1-\lambda^2} \approx 0.054, \gamma$ unitarity triangle angle

Penguin Pollution

S. Faller, R. Fleischer, T. Mannel [JHEP 03 (2015) 145]

- $B^0 \rightarrow J/\psi \rho (BF, C, S)$
- $B^0_{\rm s} \to J\!/\!\psi\,{\rm K}^*$ (BF, ${\cal C}),$ has no PA and E

 $\phi_{\rm s}$ penguin pollution of J/ $\psi \phi$ LHCb with 3 fb⁻¹ (J/ $\psi {\rm K}^*$ + J/ $\psi \rho$) [JHEP 11 (2015) 082] [PLB 742 (2015) 38-49] Consistent with zero:

$$egin{aligned} &\Delta \phi_{
m s}^{\ 0} = &0.000^{+0.011}_{-0.009}(\textit{stat}) \pm^{+0.009}_{-0.004}(\textit{syst}) \ &\Delta \phi_{
m s}^{\parallel} = &0.000^{+0.011}_{-0.009}(\textit{stat}) \pm^{+0.009}_{-0.004}(\textit{syst}) \ &\Delta \phi_{
m s}^{\perp} = &0.000^{+0.011}_{-0.009}(\textit{syst}) \ &$$

- $\bullet\,$ LHCb has the most precise measurement of $\phi_{\rm s}$
- $\phi_{\rm s}$ will continue to be dominated by ${\rm B_{s}^{0}} \rightarrow {\rm J}\!/\psi\,\phi$
 - Ultimate precision depends on ensuring excellent detector performance, e.g. flavour tagging at LHCb Upgrade
- **Penguin pollution** to be determined with increased precision in U-spin and SU(3)-related modes both by LHCb and Belle II

Future:

• Measurements statistically dominated \rightarrow look forward to Run-2 updates (and LHCb-upgrade)

15 / 16

Thank you

Backup

- θ_{μ} angle between direction of μ in J/ ψ rest frame and J/ ψ direction in B_s^0 rest frame
- $\theta_{\rm K}$ angle between direction of K in ϕ rest frame and ϕ direction in ${\rm B_s^0}$ rest frame
- φ_h angle between decay plane of $J\!/\psi
 ightarrow \mu\mu$ and $\phi
 ightarrow {
 m KK}$ decay plane

