

Prospects in spectroscopy with Belle II

Vishal Bhardwaj **IISER Mohali** (for Belle II collaboration)

14-19 July 2018

16TH CONFERENCE ON FLAVOR PHYSICS & CP VIOLATION

FPCP 2018

Outline of the talk

- Motivation for spectroscopy
- Spectroscopy at B factories
- ❖ Belle to Belle II
- Prospects of charmonium spectroscopy in Belle II
- Bottomonium spectroscopy prospects
- Summary

QCD: real particles are color singlet

Baryons are red-blue-green triplets
Λ=usd

Mesons are color-anticolor pairs

Other possible combinations of quarks and gluons: **eXoTiC**

artistic illustration

Pentaquark

H di-Baryon

Tightly bound 6 quark state

Glueball

Color-singlet multigluon bound state

Tetraquark

Tightly bound diquark & anti-diquark

Molecule

loosely bound mesonantimeson "molecule"

- \circ $q\overline{q}$ spectroscopy with heavy quark (mostly c or b) are best place to study quark model.
- Simple two body system, non-relativistic and narrow (with OZI suppression)
- Further, one can search for exotics with them.

Production of $q\bar{q}$ (-like) @ B-factories

$q \overline{q}$ (-like) states till now

- $1\frac{1}{2}$ decade has passed after the discovery of first $c\bar{c}$ -like [X(3872)] by the Belle collaboration.
- Plenty of states have been found.
- Several states found in one process (not easy to understand).
- States have non-zero charge, suggesting them to be tetraquark/molecule-like state.
- Instead of conventional spectroscopy, it is now eXotiC spectroscopy.
- However, the limited statistics always come as the evil limiting factor.

Belle II (with ability to accumulate 50 times* more data in comparison to Belle) can play crucial role in understanding these states.

Recent status

Currently we are running Phase 2, all sub-detectors are in except full vertex detector.

First collision on 26 April 2018

Validation: Belle II is working

Re-discovery of "November revolution"

in June

Starting from the start: X(3872)

Most probable explanation:

Molecule with admixture of charmonium (seems to be choice for now, others not ruled out yet).

Precise Mass and Width studies.

- ✓ Expected yield of B⁺ \rightarrow X(3872)(\rightarrow J/ $\psi\pi\pi$)K⁺ ~ 1500 events (with 10 ab⁻¹)\$
- ✓ Current yield of B⁺ $\rightarrow \psi'(\rightarrow J/\psi \pi \pi)K^+$ is ~3600 events (at Belle).

Belle II should be able to observe X(3872) or $\chi_{c1}' \rightarrow \chi_{c1}\pi^{+}\pi^{-}$

Belle, PRD 81, 031103 (2010)

Informative to study $X(3872) \rightarrow \overline{D^0}D^{*0}$ in Belle II data

Mass \rightarrow 3872.9^{+0.6} +0.4 MeV/c²

Decays of X(3872)

Measuring ratios of radiative decays

$$\mathcal{B}(X(3872) \rightarrow \psi' \gamma) / \mathcal{B}(X(3872) \rightarrow J/\psi \gamma)$$
 = 3.5 ±1.4 BaBar,PRL 102, 132001 (2009) < 2.1 (@90% CL) Belle,PRL 107, 091803 (2011) = 2.46±0.64±0.29 LHCb, NPB 886, 665 (2014)

Expected yield of B⁺ \rightarrow X(3872)(\rightarrow J/ $\psi\gamma$)K⁺ : ~ 400 events (with 10 ab⁻¹) Measure the above mention ratio precisely in order to constraint the admixture.

Charged partner of X(3872)

Belle, PRD 84, 052004 (2011)

Negative search

$$\mathcal{B}(B^0 \to X(3872)^+K^-) / \mathcal{B}(X(3872)^+ \to J/\psi \pi^+\pi^0) < 4.2 \times 10^{-6}$$

If found, will be very promising for the tetraquark picture.

Absence of charged partner suggest X(3872) to be an iso-singlet state.

Suggests X(3872) \rightarrow J/ $\psi\pi^{+}\pi^{-}$ is iso-spin violating decay? Belle and BaBar measured the allowed X(3872) \rightarrow J/ $\psi\pi^{+}\pi^{-}\pi^{0}$

$$\frac{\mathcal{B}(X(3872)\to J/\psi\omega(\to\pi^{+}\pi^{-}\pi^{0}))}{\mathcal{B}(X(3872)\to J/\psi\pi^{+}\pi^{-})} = 0.8\pm0.3$$

Belle II should measure this ratio.

Production of X(3872)

Belle, PRD 97, 012005 (2018)

Measuring Absolute \mathcal{B} (B \rightarrow X(3872)K⁺) will help in measuring \mathcal{B} (X(3872) \rightarrow final state).

Measurement is "only possible at B factories"

(operating at center-of-mass energy of Y(4S) which decays into $B\bar{B}$ pairs)

 $B \rightarrow \psi' K^{\dagger} \pi^{-}$

Missing mass recoiling against K⁺

$$M_{miss} = \sqrt{(p_{e^+e^-}^* - p_{tag}^* - p_h^*)^2}$$

$$\mathcal{B}(B^+\to X(3872)K^+) < 2.6 \times 10^{-4} (@ 90\% CL)$$

Belle II might measure this value.

B→X(3872)K+ π -

Not only for X(3872), but also for other states.

Belle, PRD91, 051101 (R) (2015) $K^*(892)^0 \text{ component in } (K\pi) \text{ system in } X(3872)$ does not dominate, "in marked contrast" to ψ ' case.

With 10 ab⁻¹, Belle II will measure this precisely.

 $_{f 1.4}$ Events will be similar to what we have now for ψ .

Other production

Belle, PRL 96 082003 (2006)

γγ→Z(3930)→DD

 $2^{3}P_{2}(\chi_{c2}')$

Belle, PRL98, 082001 (2007)

m (ω J/ψ) (GeV) Belle,PRL 104, 112004 (2010)

 $\gamma\gamma\rightarrow \Upsilon(3940)\rightarrow J/\Psi\omega$

vents / 50 MeV/c

BaBar, PRD81 092003 (2010)

 $m(D\overline{D}) [GeV/c^2]$

Belle, PRD95, 112003 (2017)

 $e^+e^- \rightarrow I/\psi D\bar{D}$

LHCb, PRD 95, 012002(2017)

Two photon processes Study of $\chi_{c2}(3930)$ using $\gamma\gamma \rightarrow Z(3930) \rightarrow D\bar{D}$ Mass and width precision study.

X(3915) (thought to be $\chi_{c0}(2P)$) was discovered in two photon process. Currently, $\chi_{c0}(2P)$ has been suggested to be recently found X(3860) in $J/\psi DD$.

Belle observed X(4350) in $\gamma\gamma \rightarrow J/\psi \phi$. Recently, LHCb did amplitude analysis of

S 159±49±7 events

Measured properties

- Mass = (3894.5±6.6± 4.5) MeV
- Width = (63±24±26) MeV

- Belle II will compliment BESIII here.
- Expects improvement in mass resolution due to longer CDC
- > One possible study $e^+e^- \rightarrow Y(\rightarrow J/\psi \pi^0 \pi^0)$ γI_{SR} for neutral partner

Mass = $(4054\pm3\pm 1)$ MeV Width = $(45\pm11\pm6)$ MeV

Any relation to $Z(4050)^+ \rightarrow \chi_{c1} \pi^+$? Search $Z(4430)^+ \rightarrow \psi' \pi^+$ as in $B^0 \rightarrow \psi' \pi^+ K^-$?

Search for Z_{cs}^+ in $e^+e^-\rightarrow J/\psi KK$. Study $e^+e^-\rightarrow D^0D^-\pi^+$ and $e^+e^-\rightarrow \Lambda_c^+\Lambda_c^-$.

Z: "with a charge"

- Perform Dalitz analyses with more statistics: help in measuring and understanding these states with precision.
- At Belle II, search for new states using $B^0 \rightarrow (\chi_{c2}\pi^-)K^+$ decay mode.
 - ightharpoonup At 10 ab⁻¹, yield comparable to current Belle yield of $B^0 \rightarrow (\chi_{c1}\pi^-)K^+$
- \circ Possible study of $B^0 \rightarrow (c\bar{c})\pi^0 K^+$ in search for neutral partners.

Bottomonium at Belle

Bottomonium spectrum is significantly different from charmonium spectrum. Z_b states were found in the $\Upsilon(5S)$ decays and were clear signature of *eXotiC* state.

1

Production ratio

Belle, PRL 108 032001 (2012)

$$\frac{\Gamma(\Upsilon(5S) \to h_b(nP)\pi^+\pi^-)}{\Gamma(\Upsilon(5S) \to \Upsilon(2S)\pi^+\pi^-)} = \begin{cases} 0.45 \pm 0.08 {}^{+0.07}_{-0.12} & \text{for h}_b(1P) \\ 0.77 \pm 0.08 {}^{+0.22}_{-0.17} & \text{for h}_b(2P) \end{cases}$$

Decay to h_b should be suppressed due to spin flip! $\Upsilon(5S) \rightarrow h_b(nP)\pi^+\pi^-$ decay mechanism seems to be *eXotiC*

More precise measurements.

ΔM, MeV

B*B* threshold

ΔΓ. MeV

ΔΓ. MeV

ΔM, MeV

B*B threshold

More on Z_h

 $\Upsilon(5S) \rightarrow B^*B^{(*)}\pi$

Masses of $Z_b(10610)^+$ and $Z_b(10650)^+$ close to BB* and B*B* threshold

B is combined with π and recoil mass to $(B\pi)$ combination is calculated

Belle, PRL116, 212001 (2016)

- $ightharpoonup Z_h(10610)^+$ in BB* and $Z_h(10650)^+$ seen in BB*/B*B*.
- \triangleright B^(*)B* dominant mode of Z_b decays.

Belle II can confirm Z_b relation to $B^{(*)}B^{*}$.

One B is fully reconstructed 2500

2000

1000

500

 $rM(B\pi)=$

 $B^+ \rightarrow J/\Psi K^+, B^+ \rightarrow D^0 (\rightarrow K^+\pi^-)\pi^+, B^+ \rightarrow D^0 (\rightarrow K^+\pi^-\pi^+\pi^-)\pi^+,$ $B^0 \rightarrow J/\Psi K^{*0} (\rightarrow K^+\pi^-), B+ \rightarrow D^-(\rightarrow K^+\pi^+\pi^-)\pi^+, B^0 \rightarrow D^{*-}$ $(\rightarrow D^0[\rightarrow K^+\pi^-]\pi^-)\pi^+$, $B^0\rightarrow D^{*-}(\rightarrow D^0[\rightarrow K^+\pi^-\pi^+\pi^-]\pi^-)\pi^+$ and $B^0 \to D^{*-}(\bar{D}^0[\to K^+\pi^-\pi^0]\pi^-)\pi^+$

Belle II can study neutral Z_b⁰ and confirm in other modes also.

 $\Upsilon(1S)\pi^+\pi^-$

Belle

Energy scan

- Many quarkonium-like states were found in energy scans in *ISR*, Y(4008) and Y(4260) in $J/\psi\pi^+\pi^-$, Y(4360) and Y(4660) in $\psi'\pi^+\pi^-$, ψ (4050) and ψ (4160) in $J/\psi\eta$.
 - ➤ Peaks observed in the cross-section depend on final state. R25
- Recent energy scan of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ (n=1,2,3) cross sections by Belle, show situation is different in bottomonium-like states.
 - All of cross-sections exhibits peaks at Y(10860) and Y(11020) resonances that are also seen in total hadronic cross sections.

Energy scan of $e^+e^-\rightarrow h_h(nP)\pi^+\pi^-$ (n=1,2)

Data consist of five energy points in Y(6S)

Belle, PRL 117, 142001 (2016)

- Evidence that proceed via intermediate Z_h state.
- \triangleright Only $Z_b(10610)$ (excluded 3.3 σ)
 - Only Z_b(10650) produced not excluded significantly.

Current statistics is limited and Belle II will play crucial role here.

Transition from $\Upsilon(5,6S)$ to molecular states

With unique data set at $\Upsilon(6S)$, Belle II can understand the $\Upsilon(6S) \rightarrow Z_b$ decay

$$\Upsilon(6S) \rightarrow h_b(nP) \pi^+\pi^-, \Upsilon(mS) \pi^+\pi^- [n=1,2; m=1,2,3]$$

If Z_b molecular state, then Heavy Quark Spin symmetry suggest there should be 2/4 molecular partner bottomonium-like state (W_b)

$$\Upsilon(5S,6S) \rightarrow W_{b0} \gamma$$

 $\Upsilon(6S) \rightarrow W_{b0} \pi^{+} \pi^{-}$
 $W_{b0} \rightarrow \eta_{b} \pi, \chi_{b} \pi, \Upsilon \rho$

Voloshin, PRD 84, 031502(R)(2011)

 $\Upsilon(6S)$

Future summary

- ➤ Quarkonium sector is not as simple as one expects.
- ➤ Many new states have been found with puzzling nature.
- ➤ Still not fully understood in spite of the best efforts by all the experiments.
- ➤ Belle II will play an important role along with LHCb and BESIII to understand them.
- ➤ Belle II detector already started collecting data and hope to provide fruitful results soon.

Thank you