Majorana dark matter in a new $B-L$ model

S Singirala*, R Mohanta*, Sudhanwa Patra, Soumya Rao

*School of Physics, University of Hyderabad
FPCP 2018, UOH
July 17, 2018

Outline

Anomaly cancellation in B-L models

Model

Description
Mass spectrum
Massless Goldstone
DM observables
Scalar portal
Gauge portal
Radiative neutrino mass
Concluding remarks

Based on "Majorana Dark Matter in a new $B-L$ model", arXiv:[1710.05775].
Collaborators

- Dr. Sudhanwa Patra, IIT Bhilai, Chhattisgarh, India.
- Dr. Soumya Rao, National Centre for Nuclear Research, Warsaw, Poland.
- SM fermion content is insufficient to cancel the triangle gauge anomalies.

$$
\mathcal{A}^{\mathrm{SM}}\left[\operatorname{grav}^{2} \times U(1)_{B-L}\right]=-3, \quad \mathcal{A}^{\mathrm{SM}}\left[U(1)_{B-L}^{3}\right]=-3 .
$$

- Possible solution is to add three neutral leptons each with $B-L$ charge -1 .
- Three exotic fermions with $B-L$ charges $-4,-4,+5$

$$
\begin{aligned}
\mathcal{A}^{B-L}\left[U(1)_{B-L}^{3}\right] & =-3+(+4)^{3}+(+4)^{3}+(-5)^{3}=0, \\
\mathcal{A}^{B-L}\left[\operatorname{grav}^{2} \times U(1)_{B-L}\right] & =-3+(+4)+(+4)+(-5)=0 .
\end{aligned}
$$

- Four exotic fermions : $\xi_{L}(4 / 3), \eta_{L}(1 / 3), \chi_{1 R}(-2 / 3)$ and $\chi_{2 R}(-2 / 3)$ is also a possible solution.

	Field	$S U(2)_{L} \times U(1)_{Y}$	$U(1)_{B-L}$	Z_{2}
Fermions	$Q_{L} \equiv(u, d)_{L}^{T}$	$(\mathbf{2}, 1 / 6)$	$1 / 3$	+
	u_{R}	$(\mathbf{1}, 2 / 3)$	$1 / 3$	+
	d_{R}	$(\mathbf{1},-1 / 3)$	$1 / 3$	+
	$\ell_{L} \equiv(\nu, e)_{L}^{T}$	$(\mathbf{2},-1 / 2)$	-1	+
	e_{R}	$(\mathbf{1},-1)$	-1	+
	$N_{1 R}$	$(\mathbf{1}, 0)$	-4	-
	$N_{2 R}$	$(\mathbf{1}, 0)$	-4	-
	$N_{3 R}$	$(\mathbf{1}, 0)$	5	-
Scalars	H	$(\mathbf{2}, 1 / 2)$	0	+
	ϕ_{1}	$(\mathbf{1}, 0)$	-1	+
	ϕ_{8}	$(\mathbf{1}, 0)$	8	+

Table : Fields and their charges of the proposed $U(1)_{B-L}$ model.
$\mathcal{L}_{\mathrm{BL}} \quad=-\frac{1}{3} g_{\mathrm{BL}} \bar{Q}_{L} Z_{\mu}^{\prime} \gamma^{\mu} Q_{L}-\frac{1}{3} g_{\mathrm{BL}} \bar{u}_{R} Z_{\mu}^{\prime} \gamma^{\mu} u_{R}-\frac{1}{3} g_{\mathrm{BL}} \bar{d}_{R} Z_{\mu}^{\prime} \gamma^{\mu} d_{R}$ $+g_{\mathrm{BL}} \bar{\ell}_{L} Z_{\mu}^{\prime} \gamma^{\mu} \ell_{L}+g_{\mathrm{BL}} \bar{e}_{R} Z_{\mu}^{\prime} \gamma^{\mu} e_{R}+i \bar{N}_{1 R}\left(\not \partial+4 i g_{\mathrm{BL}} Z_{\mu}^{\prime} \gamma^{\mu}\right) N_{1 R}$ $+i \bar{N}_{2 R}\left(\nRightarrow+4 i g_{\mathrm{BL}} Z_{\mu}^{\prime} \gamma^{\mu}\right) N_{2 R}+i \bar{N}_{3 R}\left(\nRightarrow-5 i g_{\mathrm{BL}} Z_{\mu}^{\prime} \gamma^{\mu}\right) N_{3 R}$ $-\frac{y_{\alpha \beta}}{2}\left(\sum_{\alpha, \beta=1,2} \overline{N_{\alpha R}^{c}} N_{\beta R} \phi_{8}+h . c\right)-\frac{y_{\alpha 3}}{2}\left(\sum_{\alpha=1,2} \overline{N_{\alpha R}^{c}} N_{3 R} \phi_{1}+h . c\right)$ $+\left|\left(\partial_{\mu}+i g_{\mathrm{BL}} Z_{\mu}^{\prime}\right) \phi_{1}\right|^{2}+\left|\left(\partial_{\mu}-8 i g_{\mathrm{BL}} Z_{\mu}^{\prime}\right) \phi_{8}\right|^{2}$
$-\frac{1}{4} F_{Z^{\prime}}^{\mu \nu} F_{\mu \nu}^{Z^{\prime}}-V\left(H, \phi_{1}, \phi_{8}\right)+\mathcal{L}_{S M}$,

$$
\begin{align*}
V\left(H, \phi_{1}, \phi_{8}\right) & =\mu_{H}^{2} H^{\dagger} H+\lambda_{H}\left(H^{\dagger} H\right)^{2}+\mu_{1}^{2} \phi_{1}^{\dagger} \phi_{1}+\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\mu_{8}^{2} \phi_{8}^{\dagger} \phi_{8} \\
& +\lambda_{8}\left(\phi_{8}^{\dagger} \phi_{8}\right)^{2}+\lambda_{H 1}\left(H^{\dagger} H\right)\left(\phi_{1}^{\dagger} \phi_{1}\right)+\lambda_{H 8}\left(H^{\dagger} H\right)\left(\phi_{8}^{\dagger} \phi_{8}\right) \\
& +\lambda_{18}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{8}^{\dagger} \phi_{8}\right) \tag{2}
\end{align*}
$$

$$
H^{0}=\frac{1}{\sqrt{2}}(v+h)+\frac{i}{\sqrt{2}} A^{0}
$$

$$
\phi_{1}^{0}=\frac{1}{\sqrt{2}}\left(v_{1}+h_{1}\right)+\frac{i}{\sqrt{2}} A_{1}
$$

$$
\begin{equation*}
\phi_{8}^{0}=\frac{1}{\sqrt{2}}\left(v_{8}+h_{8}\right)+\frac{i}{\sqrt{2}} A_{8} \tag{3}
\end{equation*}
$$

where $\langle H\rangle=(0, v / \sqrt{2})^{T},\left\langle\phi_{1}\right\rangle=v_{1} / \sqrt{2}$, and $\left\langle\phi_{8}\right\rangle=v_{8} / \sqrt{2}$.

- $M_{Z^{\prime}}=g_{\mathrm{BL}} \sqrt{v_{1}^{2}+64 v_{8}^{2}}$
- Exotic fermion mass matrix

$$
\begin{aligned}
& \qquad M_{R}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
y_{11} v_{8} & y_{12} v_{8} & y_{13} v_{1} \\
y_{12} v_{8} & y_{22} v_{8} & y_{23} v_{1} \\
y_{13} v_{1} & y_{23} v_{1} & 0
\end{array}\right) \\
& M_{D \alpha}=\left(U^{T} M_{R} U\right)_{\alpha} \text { and } N_{D \alpha}=U_{\alpha \beta}^{\dagger} N_{\beta} . \\
& \text { CP-even }
\end{aligned}
$$

$$
M_{E}^{2}=\left(\begin{array}{ccc}
2 \lambda_{H} v^{2} & \lambda_{H 1} v v_{1} & \lambda_{H 8} v v_{8} \tag{4}\\
\lambda_{H 1} v v_{1} & 2 \lambda_{1} v_{1}^{2} & \lambda_{18} v_{1} v_{8} \\
\lambda_{H 8} v v_{8} & \lambda_{18} v_{1} v_{8} & 2 \lambda_{8} v_{8}^{2}
\end{array}\right) .
$$

- CP-odd

$$
\begin{aligned}
& \left.A_{\mathrm{G}}=-\frac{8 v_{8}}{\sqrt{v_{1}^{2}+64 v_{8}^{2}}} A_{8}+\frac{v_{1}}{\sqrt{v_{1}^{2}+64 v_{8}^{2}}} A_{1} \quad \text { (eaten up by } \mathrm{Z}^{\prime}\right), \\
& \left.A_{\mathrm{NG}}=\frac{v_{1}}{\sqrt{v_{1}^{2}+64 v_{8}^{2}}} A_{8}+\frac{8 v_{8}}{\sqrt{v_{1}^{2}+64 v_{8}^{2}}} A_{1} \quad \text { (remains as } \mathrm{NG}\right) .
\end{aligned}
$$

- It can give rise to an additional decay channel contributing to the invisible width of SM Higgs, given as

$$
\begin{equation*}
\Gamma\left(H_{1} \rightarrow A_{\mathrm{NG}} A_{\mathrm{NG}}\right) \simeq \frac{M_{H_{1}}^{3} \sin ^{2} \beta}{32 \pi v_{1}^{2}}, \tag{5}
\end{equation*}
$$

where β denotes the mixing between H and ϕ_{1}. The invisible branching ratio of Higgs is given as

$$
\begin{equation*}
\mathrm{Br}_{\mathrm{inv}}=\frac{\Gamma\left(H_{1} \rightarrow A_{\mathrm{NG}} A_{\mathrm{NG}}\right)}{\Gamma\left(H_{1} \rightarrow A_{\mathrm{NG}} A_{\mathrm{NG}}\right)+\cos ^{2} \beta \Gamma_{\mathrm{SM}}^{\mathrm{Higgg}}} . \tag{6}
\end{equation*}
$$

Using the constraint, $\mathrm{Br}_{\mathrm{inv}} \simeq 20 \%$ [1], $\Gamma_{\mathrm{SM}}^{\mathrm{Higgs}} \simeq 4 \mathrm{MeV}$, we obtain the upper limit on the mixing angle as

$$
\begin{equation*}
|\tan \beta| \leq 2.2 \times 10^{-4} \times\left(\frac{v_{1}}{\mathrm{GeV}}\right) . \tag{7}
\end{equation*}
$$

If the NG stays in thermal equilibrium with ordinary matter until muon annihilation, then it mimics as fractional cosmic neutrinos contributing nearly 0.39 to the effective number of neutrino species to give $N_{\text {eff }}=3.36_{-0.64}^{+0.68}$ at 95% C.L [2], a remarkable agreement with Planck data.

1. G. Belanger et.al, Phys.Lett. B723 (2013) 340-347.
2. S. Weinberg, PRL 110 (2013) no. 24, 241301.

For simplicity, we consider

$$
M_{R}=\left(\begin{array}{lll}
x & a & b \tag{8}\\
a & x & b \\
b & b & 0
\end{array}\right)
$$

which can be obtained by assuming the Yukawa couplings to satisfy the relations $y_{11} \approx y_{22}$ and $y_{13} \approx y_{23}$ along with $v_{1} \approx v_{8}$. The above mass matrix can be diagonalized using the unitary matrix as $\left(U_{1} \cdot\right)^{T} \cdot M_{R} \cdot\left(U_{1} \cdot\right)$.

$$
M^{\mathrm{diag}}=\left(\begin{array}{ccc}
x-a & 0 & 0 \tag{9}\\
0 & \frac{1}{2}\left(-(x+a)+\sqrt{8 b^{2}+(x+a)^{2}}\right) & 0 \\
0 & 0 & \frac{1}{2}\left((x+a)+\sqrt{8 b^{2}+(x+a)^{2}}\right)
\end{array}\right)
$$

Possible annihilation channels in scalar portal :
$N_{D 1} N_{D 1} \rightarrow f \bar{f}, W^{+} W^{-}, Z Z, A_{\mathrm{NG}} A_{\mathrm{NG}}, H_{i} H_{j}$

Figure: Scalar-portal relic abundance as a function of DM mass $M_{D 1}$ for two specific mass values of the physical scalar H_{3}. The horizontal dashed lines represent the 3σ value of the current relic density.

Parameters	Range
$v_{1,8}[\mathrm{GeV}]$	2000
$M_{H_{2}}[\mathrm{GeV}]$	$1000-2000$
$M_{H_{3}}[\mathrm{GeV}]$	$M_{H_{2}}-3000$
β	$0.01-0.001$

* XENON Collaboration, E. Aprile et.al, PRL 119 (2017) no.18, 181301.
* LUX Collaboration, D.S. Akerib et.al, Phys. Rev. Lett. 118, 021303

Figure: Variation of relic abundance $\Omega \mathrm{h}^{2}$ with the mass of DM with $\left(M_{H_{2}}, M_{H_{3}}\right)=(1,1.5) \mathrm{TeV}$. Left panel depicts the variation for fixed Z^{\prime} mass and varying $B-L$ gauge coupling $g_{B L}$. The right panel displays the behavior for constant coupling $g_{B L}$ and varying mediator mass.

* ATLAS-CONF-2015-070.
* ALEPH, DELPHI, L3, OPAL and LEP Electroweak Collaborations, Phys.Rept. 532 (2013) 119-244.

Field	$S U(2)_{L} \times U(1)_{Y}$	$U(1)_{B-L}$	Z_{2}
η	$(2,1 / 2)$	-3	-1

Interaction term to generate light neutrino mass at one loop level is

$$
\begin{gather*}
\sum_{\alpha=1,2} Y_{i \alpha} \overline{\left(\ell_{L}\right)} \tilde{i} \tilde{\eta} N_{\alpha R} . \tag{10}\\
V^{\prime}=V\left(H, \phi_{1}, \phi_{8}\right)+\mu_{\eta}\left(\eta^{\dagger} \eta\right)+\lambda_{\eta}\left(\eta^{\dagger} \eta\right)^{2}+\lambda_{H \eta}^{\prime}\left(H^{\dagger} \eta\right)\left(\eta^{\dagger} H\right) \\
+\frac{\lambda_{H \eta}^{\prime \prime}}{2}\left[\left(H^{\dagger} \eta\right)^{2}+\text { h.c. }\right]+\left(\eta^{\dagger} \eta\right)\left[\lambda_{H \eta}\left(H^{\dagger} H\right)+\lambda_{\eta 1}\left(\phi_{1}^{\dagger} \phi_{1}\right)+\lambda_{\eta 8}\left(\phi_{8}^{\dagger} \phi_{8}\right)\right] . \\
\left\langle H^{0}\right\rangle \\
\left.\vdots \vdots H^{0}\right\rangle \\
\ddots_{0}^{\prime}
\end{gather*}
$$

The masses of real and imaginary components of the inert doublet η are

$$
M_{s, A}^{2}=\mu_{\eta}^{2}+\frac{\lambda_{\eta 1}}{2} v_{1}^{2}+\frac{\lambda_{\eta 8}}{2} v_{8}^{2}+\left(\lambda_{H \eta}+\lambda_{H \eta}^{\prime} \pm \lambda_{H \eta}^{\prime \prime}\right) \frac{v^{2}}{2},
$$

Assuming $m_{0}^{2}=\left(M_{S}^{2}+M_{A}^{2}\right) / 2$ is much greater than $M_{S}^{2}-M_{A}^{2}=\lambda_{H \eta}^{\prime \prime} v^{2}$, then

$$
\begin{equation*}
\left(\mathcal{M}_{\nu}\right)_{i j}=\frac{\lambda_{H \eta}^{\prime \prime} v^{2}}{16 \pi^{2}} \sum_{\alpha=1}^{3} \frac{Y_{i \alpha} Y_{j \alpha} M_{D \alpha}}{m_{0}^{2}-M_{D \alpha}^{2}}\left[1-\frac{M_{D \alpha}^{2}}{m_{0}^{2}-M_{D \alpha}^{2}} \ln \frac{m_{0}^{2}}{M_{D \alpha}^{2}}\right] \tag{11}
\end{equation*}
$$

Here $M_{D \alpha}=\left(U^{T} M_{R} U\right)_{\alpha}$ and $N_{D \alpha}=U_{\alpha \beta}^{\dagger} N_{\beta}$. With a sample parameter space, $\left(Y, \lambda_{H \eta}^{\prime \prime}\right) \sim\left(10^{-2}, 10^{-5}\right)$ and $\left(m_{0}, M_{D \alpha}\right) \sim(2,0.5) \mathrm{TeV}$, one can have $m_{\nu} \sim 10^{-11} \mathrm{GeV}$.

- We have explored a $B-L$ gauge extension of SM with three exotic fermions with $B-L$ charges $-4,-4,+5$ to avoid the triangle gauge anomalies.
- We have the studied the fermion DM phenomenology in the scalar and gauge portal scenario.
- We have discussed the mechanism of generating light neutrino mass by adding an inert doublet with $B-L$ charge -3 .
- A massless physical Goldstone plays a role in DM relic density.
- Finally, the $B-L$ gauge extensions are simple to work, with minimal particle content and parameters.

Thank you

