$b \rightarrow c l \nu$ anomalies in light of vector and scalar interactions

Aritra Biswas¹

¹Indian Association for the cultivation of Science, Kolkata

Work done in collaboration with A. Shaw, S. Patra and D.K. Ghosh

based on Phys.Rev. D97 (2018) no.3, 035019 and arXiv:1801.03375

・ロト・西ト・ヨト ・日・ うろの

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment
- 3 Observables
 - $\blacksquare \ \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
 - $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
 - $\blacksquare P_{\tau}(D^*)$
 - $\blacksquare B_{\rm C} \rightarrow \tau \nu_{\tau}$
- 4 Analysis
 - Vector and Scalar
 - Only Scalar
- 5 Summary and Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- In the precision era, flavour physics is the best probe for BSM NP. *R*(*K*^(*)):loop level. *R*(*D*^(*)), *R*(*J*/ψ): tree level.
- Hints of Lepton flavour universality violating NP.
- Standard notation for charged current anomalies:

$$\mathcal{R}(X) = \int_{m_{\tau}^{2}}^{(m_{B_{(c)}} - m_{X})^{2}} \frac{d\Gamma(B_{(c)} \to X\tau\nu)}{dq^{2}} / \int_{m_{\ell}^{2}}^{(m_{B_{(c)}} - m_{X})^{2}} \frac{d\Gamma(B_{(c)} \to Xl\nu)}{dq^{2}}$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ 少へ⊙

- Ratio of decay widths to cancel out the form factor and CKM uncertainties.
- Model independent analyses followed by examples using models for further clarification.

Present Status: Theory and Experiment

	$\mathcal{R}(D)$	$\mathcal{R}(D^*)$	Correlation	$P_{\tau}(D^*)$		T	$\mathcal{R}(J/\psi)$	
SM	0.304(3)	0.259(6)	-0.491(25)		0.249	0.249(42)(LFCQ)		
						0.289	(28)(PQCD)	
Babar	0.440(58) _{st} .(42) _{sy} .	0.332(24) _{st} .(18) _{sy} .	-0.27					
Belle (2015)	0.375(64) _{st} .(26) _{sy} .	0.293(38) _{st} .(15) _{sy} .	-0.49					
Belle (2016)-I	-	0.302(30) _{st.} (11) _{sy.}						
Belle (2016)-II	-	0.270(35) _{st} . +0.028 -0.025	0.33	-0.38	(51) _{st} . +0.2	21 16		
LHCb (2015)	-	0.336(27) _{st} .(30) _{sy} .						
LHCb (2017)	-	0.286(19) _{st} .(25) _{sy} .(21)						
World Avg.	0.407(39) _{st} .(24) _{sy} .	0.304(13) _{st} .(7) _{sy} .	0.20			0.71(1	7) _{st.} (18) _{sy.}	
* 0.5 0.45 0.4 0.35 0.3 0.2 0.2	Balle PELL09,101 (82C2012) Balle (PEDP2/072014/2015) LFRCh, PELL05,111893(2015) Belle, PELL15,111893(2017) Belle, PELL15,211801(2017) RithCh, FPC72017 Average R	$\chi^2 = 1.0 \text{ contours}$ $D = 0.3008 IPQC1 (2015) \\ D = 0.525(3) S. Fajfer et al. (2012) \\ D = 0.525(3) S. Fajfer et al. (2012) \\ HELAV \\ FCC = 2017 \\ PC(2) = 1.68v \\ PC($	π R P _τ JHE	2(<i>D</i>) (<i>D</i> *) (<i>D</i> *) P 1712	R(D) 1. 2 (2017)	\$\mathcal{R}(D^*)\$ 0.118 1. 060	<i>P</i> _τ (<i>D</i> *) -0.023 0.617 1.	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Observables

 $\mathcal{L}_{\mathcal{R}}(\mathcal{D})$ and $\mathcal{R}(\mathcal{D}^*)$

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment
- 3 Observables
 - $\blacksquare \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
 - $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
 - $\blacksquare P_{\tau}(D^*)$
 - $\blacksquare B_{\rm C} \to \tau \nu_{\tau}$
- 4 Analysis
 - Vector and Scalar
 - Only Scalar
- 5 Summary and Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$\mathcal{R}(\mathcal{D})$ and $\mathcal{R}(\mathcal{D}^*)$

Differential decay rates for $B \to D^{(*)}\ell\nu_{\ell}$ (with $\ell = e, \mu$ or τ) with this new interaction are given by:

$$\begin{split} \frac{d\Gamma(\bar{B} \to D\ell \bar{\nu_{\ell}})}{dq^2} &= \frac{G_F^2 |V_{cb}|^2}{96\pi^3 m_B^2} q^2 p_D \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left[\left|1 + C_{V_1}'\right|^2 \left(1 + \frac{m_\ell^2}{2q^2}\right)^2 H_{V,0}^{s2} + \frac{3m_\ell^2}{2q^2} \right] \\ &\left|1 + C_{V_1}' + \frac{q^2}{m_\ell (m_b - m_c)} C_S^\ell\right|^2 H_{V,t}^{s2} \right], \\ \frac{d\Gamma(\bar{B} \to D^* \ell \bar{\nu_{\ell}})}{dq^2} &= \frac{G_F^2 |V_{cb}|^2}{96(\pi)^3 m_B^2} q^2 p_{D^*} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left[\left(1 + \frac{m_\ell^2}{2q^2}\right) \left(H_{V,+}^2 + H_{V,-}^2 + H_{V,0}^2\right) \right] \\ &\left|1 + C_{V_1}'\right|^2 + \frac{3m_\ell^2}{2q^2} \left|1 + C_{V_1}' + \frac{q^2}{m_\ell (m_b + m_c)} C_S^\ell\right|^2 H_{V,t}^2 \right]. \end{split}$$

■ FF's taken from Phys. Rev. D85 (2012) 094025.

$$\mathcal{R}_{D^{(*)}} = \left[\int_{m_{\tau}^2}^{q_{max}^2} \frac{d\Gamma\left(\overline{B} \to D^{(*)}\tau\overline{\nu}\right)}{dq^2} dq^2 \right] \times \left[\int_{m_{\ell}^2}^{q_{max}^2} \frac{d\Gamma\left(\overline{B} \to D^{(*)}\ell\overline{\nu}\right)}{dq^2} dq^2 \right]^{-1}.$$

b ightarrow c / u anomalies in light if extended scalar sectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment

3 Observables

- $\blacksquare \ \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
- $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
- $\blacksquare P_{\tau}(D^*)$
- $\blacksquare B_{\rm C} \to \tau \nu_{\tau}$
- 4 Analysis
 - Vector and Scalar
 - Only Scalar
- 5 Summary and Conclusions

 $\mathcal{R}(\mathcal{J}/\psi)$

Differential decay rate for $\bar{B} \to J/\psi \ell \bar{\nu_{\ell}}$ (with $\ell = e, \mu \text{ or } \tau$):

$$\begin{split} \frac{d\Gamma(\bar{B_c} \to J/\psi \ell \bar{\nu_\ell})}{dq^2} = & \frac{G_F^2 |V_{cb}|^2}{96(\pi)^3 m_B^2} q^2 \rho_{J/\psi} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \times \left[\left(1 + \frac{m_\ell^2}{2q^2}\right) \left(H_{J,+}^2 + H_{J,-}^2\right) + H_{J,0}^2 \right] \\ & + H_{J,0}^2 \left(1 + C_{V_1}'\right)^2 + \frac{3m_\ell^2}{2q^2} \left[1 + C_{V_1}' + \frac{q^2}{m_\ell \left(m_b + m_c\right)} C_S^\ell \right]^2 H_{J,1}^2 \right] \,. \end{split}$$

- Theoretical predictions heavily dependent on Form factors.
- Experiment: Phys. Rev. D79 (2009) 013008: fit results unavailable.
- PQCD:Chin. Phys. C37 (2013) 093102, constituent quark model:Phys. Lett. B452 (1999) 129-136, relativistic quark model:Phys. Rev. D68 (2003) 094020, non-relativistic quark model:Phys. Rev. D74 (2006) 074008, QCD sum rules:hep-ph/0211021, relativistic constituent quark model:Phys. Rev. D73 (2006) 054024 and LFCQ:Phys. Rev. D79 (2009) 054012.
- In this work we use PQCD (max value) and LFCQ (min. value)

$\Box_{\text{Observables}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment

3 Observables

- $\blacksquare \ \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
- $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
- $\blacksquare P_{\tau}(D^*)$
- $\blacksquare B_{\rm C} \to \tau \nu_{\tau}$
- 4 Analysis
 - Vector and Scalar
 - Only Scalar
- 5 Summary and Conclusions

$P_{\tau}(D^*)$

Phys. Rev. Lett. 118 (2017) 211801: First ever measurement of the τ lepton polarization (BELLE)

Imprecise, consistent with SM. Included due to correlation with R(D*) in same work.

$$P_{\tau}(D^*) = \frac{\Gamma^{\lambda_{\tau}=1/2} - \Gamma^{\lambda_{\tau}=-1/2}}{\Gamma^{\lambda_{\tau}=1/2} + \Gamma^{\lambda_{\tau}=-1/2}}$$

$$\begin{split} \frac{d\Gamma^{\lambda_{\tau}=+1/2}(\bar{B}\to D^{*}\tau\bar{\nu})}{dq^{2}} &= \frac{G_{F}^{2}|V_{cb}|^{2}}{96(\pi)^{3}m_{B}^{2}}q^{2}p_{D^{*}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2}\frac{m_{\tau}^{2}}{2q^{2}}\left[\frac{1}{2}\left|1+C_{V_{1}}^{\prime}\right|^{2}\right.\\ &\left.\left(H_{V,+}^{2}+H_{V,-}^{2}+H_{V,0}^{2}\right)+3(1+\frac{q^{2}}{m_{\tau}\left(m_{b}+m_{c}\right)}C_{S}^{\tau}\right)^{2}H_{V,t}^{2}\right],\\ \frac{d\Gamma^{\lambda_{\tau}=-1/2}(\bar{B}\to D^{*}\tau\bar{\nu})}{dq^{2}} &= \frac{G_{F}^{2}|V_{cb}|^{2}}{96(\pi)^{3}m_{B}^{2}}q^{2}p_{D^{*}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2}\left|1+C_{V_{1}}^{\prime}\right|^{2}\left[\left(H_{V,+}^{2}+H_{V,-}^{2}+H_{V,0}^{2}\right)\right]. \end{split}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment

3 Observables

- $\blacksquare \ \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
- $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
- $\blacksquare P_{\tau}(D^*)$
- $\blacksquare B_{\rm C} \to \tau \nu_{\tau}$
- 4 Analysis
 - Vector and Scalar
 - Only Scalar
- 5 Summary and Conclusions

$B_c \rightarrow \tau \nu_{\tau}$

- Strong constraint for scalar type NP in $b \rightarrow c\tau\nu$ decays (Phys. Rev. Lett. 118 (2017) 081802).
- Branching fraction of $B_c \rightarrow \tau \nu$:

$$\mathcal{B}(B_c \to \tau \nu) = \tau_{B_c} \frac{m_{B_c} m_{\tau}^2 f_{B_c}^2 G_F^2 |V_{cb}|}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2}\right)^2 \\ \left|1 + C_{V_1}^{\prime} - \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)} C_S^{\tau}\right|^2,$$
(1)

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ 少へ⊙

- $f_{B_c} = 0.434(15)$ GeV and $\tau_{B_c} = 0.507(9)$ ps.
- $\Gamma_{B_c} \lesssim 30\%$: Relaxed limit (Phys. Rev. Lett. 118 (2017) 081802).
- Γ_{Bc} ≤ 10%, LEP data at Z peak: Aggressive limit (Phys. Rev. D96 (2017) 075011). Even tighter bound considering full L3 data.
- Our analysis: Relaxed→Full B_c lifetime, Aggressive→ $\Gamma_{B_c} \lesssim 10\%$

b ightarrow c / u anomalies in light if extended scalar sectors

- Analysis

- Vector and Scalar

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment
- 3 Observables
 - $\blacksquare \ \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
 - $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
 - $\blacksquare P_{\tau}(D^*)$
 - $\blacksquare B_{\rm C} \to \tau \nu_{\tau}$
- 4 Analysis
 - Vector and Scalar
 - Only Scalar
 - Summary and Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Analysis:Vector and Scalar(Figures)

SQ P

æ

Analysis:Vector and Scalar(Table)

Data	$\chi^2_{\it min}$	d.o.f	<i>p</i> -value	Cw	$\mathcal{C}_{H}^{ au}$ (in GeV $^{-2}$)	Correlation
All Data	2.935	6	81.694	0.076(32)	0.015(12)	-0.702
All Belle	0.349	2	83.98	0.060(46)	0.010(18)	-0.715
Babar + LHCb	1.057	2	58.941	0.091(45)	0.022(17)	-0.687
Babar + Belle	2.652	4	61.77	0.084(36)	0.013(13)	-0.728
Belle + LHCb	0.398	4	98.264	0.057(39)	0.011(17)	-0.678
All Except Latest LHCb	2.662	5	75.191	0.084(36)	0.013(13)	-0.728

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ 少へ⊙

Inclusion of BaBar Data: Fits worsen

Best Result: Belle+LHCb

Tension between BaBar and Belle & LHCb.

Example:NMUED

• $C_W = \sum_{n \ge 2} \frac{l_n^2 M_W^2}{M_{W(n)}^2}$, $C'_S = m_b m_l C'_H$ • $C'_H = \sum_{n \ge 2} \frac{l_n^2 m_{V(n)^2}}{M_{W(n)}^4}$ $\times [\cos(c(n) - l(n)) - \sin(c(n) + l(n))]$ $I_n = \frac{\sqrt{2}\sqrt{1+\frac{R_V}{\pi R}}}{\left(1+\frac{R_f}{\pi R}\right)\sqrt{1+\frac{R_V}{V}m_V^{(n)}} + \frac{R_V}{\pi R}} \frac{(R_f - R_V)}{\pi R}$ • $\delta G_F = \sum_{n \ge 2} \frac{g_2^2 I_n^2}{4\sqrt{2}M_{W(n)}^2}$ $S = 0, \ T = -\frac{1}{\alpha} \frac{\delta G_F}{G_F}, \ U = \frac{4 \sin^2 \theta_W}{\alpha} \frac{\delta G_F}{G_F}$

b ightarrow c / u anomalies in light if extended scalar sectors

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Outline

- 1 Charged current anomalies
- 2 Present Status: Theory and Experiment
- 3 Observables
 - $\blacksquare \ \mathcal{R}(\mathcal{D}) \text{ and } \mathcal{R}(\mathcal{D}^*)$
 - $\blacksquare \ \mathcal{R}(\mathcal{J}/\psi)$
 - $\blacksquare P_{\tau}(D^*)$
 - $\blacksquare B_{\rm C} \to \tau \nu_{\tau}$

4 Analysis

Vector and Scalar

Only Scalar

Summary and Conclusions

Analysis:Scalar(Figures)

Analysis:Scalar(Table)

	Without	t $\mathcal{R}_{J/\psi}$	With $\mathcal{R}_{J/\psi}$			Fit Results		
			PG	CD	LF	CQ		
Datasets	χ^2_{min}	<i>p</i> -value	χ^2_{min}	<i>p</i> -value	χ^2_{min}	<i>p</i> -value	Re(C _H)	$Im(C_H)$
	/DoF	(%)	/DoF	(%)	/DoF	(%)	(GeV ⁻²)	(GeV ⁻²)
All Data	9.22/8	23.72	11.86/9	15.76	12.38/9	13.51	-0.031(8)	0.000(73)
Belle	1.71/4	63.54	4.39/5	35.63	4.89/5	29.83	-0.023(11)	0.000(87)
Babar+LHCb	6.42/3	4.03	9.00/4	2.92	9.54/4	2.29	-0.042(11)	0.000(84)
Babar+ Belle	6.71/6	24.31	9.35/7	15.48	9.87/7	13.03	-0.030(8)	0.000(74)
Belle + LHCb	4.70/6	45.41	7.37/7	28.82	7.88/7	24.72	-0.025(11)	0.000(78)
All \mathcal{R}_{D^*}	2.37/5	66.78	4.31/6	50.53	4.99/6	41.67	-	-
No $P_{\tau}(D^*)$	9.21/7	16.23	11.84/8	10.58	12.36/8	8.92	-0.031(8)	0.000(72)

\square $\mathcal{R}_{J/\psi}$ pull in opposite direction to $\mathcal{R}_{D^{(*)}}$

PQCD fits better than LFCQ since the former lies close to experimental value.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

Illustrative case: All Data: $\chi^2_{SM} = 22.82$, 2.87 σ from best-fit point.

Example:GM and LQ

• GM Model:

$$egin{aligned} \mathcal{C}^\ell_S &= -\mathcal{C}_H \; m_b \; m_\ell = -rac{ an^2 \, heta_H}{m_{H_3^\pm}^2} m_b \; m_\ell, \ & an heta_H &= rac{2\sqrt{2} \, v_\chi}{v_\phi} \end{aligned}$$

• LQ Model:

$$\begin{aligned} C_{S_{1}}^{l}(\mu_{b}) &= \left[\frac{\alpha_{s}(m_{t})}{\alpha_{s}(\mu_{b})}\right]^{\frac{\gamma_{S}}{2\beta_{0}^{(5)}}} \left[\frac{\alpha_{s}(m_{LQ})}{\alpha_{s}(m_{t})}\right]^{\frac{\gamma_{S}}{2\beta_{0}^{(6)}}} C_{S_{1}}^{kl}(m_{LQ}) \\ &= -\left[\frac{\alpha_{s}(m_{t})}{\alpha_{s}(\mu_{b})}\right]^{\frac{\gamma_{S}}{2\beta_{0}^{(5)}}} \left[\frac{\alpha_{s}(m_{LQ})}{\alpha_{s}(m_{t})}\right]^{\frac{\gamma_{S}}{2\beta_{0}^{(6)}}} \\ &\frac{1}{2\sqrt{2}G_{F}V_{cb}}\sum_{k=1}^{3}V_{k3}\left[\frac{2g_{2L}^{kl}g_{2R}^{23*}}{M_{V_{2}^{1/3}}^{2}}\right]. \end{aligned}$$

Data	$\operatorname{Re}\left(g_{2L}^{33}g_{2R}^{23*} ight)$	$\operatorname{Im}\left(g_{2L}^{33}g_{2R}^{33*} ight)$
All Data	-0.250(64)	0.0(6)
Belle	-0.186(90)	0.0(7)
Babar+LHCb	-0.338(89)	0.0(7)
Babar + Belle	-0.245(65)	0.0(6)
Belle + LHCb	-0.198(88)	0.0(6)
No $P_{ au}$ (D^*)	-0.250(64)	0.0(6)

▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

Summary and Conclusions

- Real vector and scalar WC: NMUED. Real scalar WC: GM. Complex scalar WC: LQ.
- Real vector+scalar and complex WC: allowed by the available data and constraints such as $\mathcal{B}(B_c \to \tau \nu)$.
- Preceding Wilson coefficient, if real, has to be positive to yield better fits to the data than the SM.
- However, models with extended Higgs sector: $\tan^2 \theta_H / m_{H_3^{\pm}}^2$ with an overall negative sign.
- Present data for charged current anomalies disfavor all models with extended Higgs sector at $\sim 3\sigma$.
- Tension between BaBar and Belle, LHCb. More correlated R_D, R_{D*} measurments welcome.

Summary and Conclusions

Thank You