Input from the charm threshold for the measurement of γ

Resmi P K (on behalf of CLEO Collaboration)

IIT Madras

FPCP 2018

July 17, 2018

Resmi P K, IIT Madras

Charm threshold input

- Introduction
- CLEO-c and quantum correlation
- Charm threshold inputs
 - CP-content F₊
 - c_i and s_i
 - Coherence factor R
- Summary

CKM angles - current status

Figure : Constraints on CKM parameters ^[1].

Current best results for CKM angles $\ensuremath{^{[2]}}$

- $\beta_{\text{measured}} = (21.9^{+0.7}_{-0.7})^{\circ}$
- $\gamma_{\text{measured}} = (73.5^{+4.2}_{-5.1})^{\circ}$

•
$$\gamma_{{
m predicted}} = (65.3^{+1.0}_{-2.5})^\circ$$

 $^{2} http://www.slac.stanford.edu/xorg/hflav/triangle/moriond2018/index.shtml$

measurements from $B \rightarrow DK$ decays

• Determine γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D^0} K^-$, tree-level diagrams $\Rightarrow 10^{-7}$ theoretical uncertainty ^[3].

colour allowed $B^- \rightarrow D^0 K^- \approx V_{cb} V_{us}^*$ A₁

colour suppressed $B^{-} \rightarrow \bar{D^{0}} K^{-} \approx V_{ub} V_{cs}^{*}$ $\mathbf{A_{1} r_{R} e^{i(\delta_{B} - \gamma)}}$

- Three types of D final states generally used,
 - CP-eigenstates : GLW method ^[4].
 - $K^+X^-(X^- = \pi^-, \pi^-\pi^0, \pi^-\pi^+\pi^-)$, DCS modes : **ADS method** ^[5].
 - Multibody self-conjugate states : GGSZ method [6].
- ³J. Brod, J. Zupan, JHEP **01**, 051 (2014)
- ⁴M. Gronau and D. London, PLB **253**, 483 (1991); M. Gronau and D. Wyler, PLB **265**, 172 (1991)
- ⁵D. Atwood, I. Dunietz and A. Soni, PRL **78**, 3357 (1997)
- A. Giri, Yu. Grossman, A. Soffer and J. Zupan, PRD 68, 054018 (2003)

Resmi P K, IIT Madras Charm threshold input

γ measurements - charm inputs

- The results are statistically limited ⇒ charm inputs measuring from B data leads to loss in precision.
- ADS and GGSZ methods need input from charm:
 - δ_D
 - coherence factor R
 - C_i, S_i
- New D modes can be added for GLW:
 - 3-body final states
 - CP-content F₊
- Inputs from charm threshold are crucial!
- The current CLEO-c inputs contribute
 - 2° uncertainty to γ ^[7].

Resmi P K, IIT Madras Charm t

Charm threshold input

²http://www.slac.stanford.edu/xorg/hflav/triangle/moriond2018/index.shtml 7LHCb-PUB-2016-025

Quantum correlated *D* mesons at CLEO-c

• $\Psi o D \bar{D}$ are produced coherently in the C = -1 state.

$$rac{\left(\ket{D}\ket{ar{D}} - \ket{ar{D}}\ket{D}
ight)}{\sqrt{2}}$$

- Good 4π solid angle coverage \Rightarrow full reconstruction of $D\overline{D}$ event.
- High efficiency of track and photon reconstruction.
- If Ψ(3770) decays into two states F and G, then decay rate (Γ) depends on their CP eigenvalue.

Figure : CLEO-c detector.

- F = CP even (odd), G = CP odd (even) \Rightarrow two-fold enhancement.
- F = CP even (odd), G = CP even (odd) \Rightarrow zero.
- Γ changes with F or G being quasi CP states (π⁺π⁻π⁰) or self conjugate states (K⁰_Sπ⁺π⁻).

$D ightarrow K_{ m S}^0 \pi^+ \pi^-$

- Golden mode to determine γ via GGSZ formalism.
- Optimal binning of Dalitz plot guided by amplitude model.
- c_i and s_i in each bin measured from quantum correlated D mesons at CLEO-c.

• Belle and LHCb ϕ_3/γ measurements with CLEO-c inputs :

$$\frac{\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ}}{(\text{PRD 85, 112014 (2012)})}$$

$$\gamma = (62^{+15}_{-14})^{\circ}$$
(JHEP 1410, 097 (2014))

• Preliminary c_i , s_i results with BES III.

⁸PRD 82, 112006 (2010)

$D ightarrow K_{ m S}^0 \pi^+ \pi^- \pi^0$

- Relatively large branching fraction of 5.2%.
- Analysed the mode against CP-eigenstates and $K^0_{S,L}\pi^+\pi^-$ as tags.

⁹JHEP **01**, 82 (2018)

$D ightarrow K_{ m S}^0 \pi^+ \pi^- \pi^0$

- Interesting resonance substructures.
 - $K_{\rm S}^0 \omega$ *CP* eigenstate GLW like.
 - $K^{*-}\pi^{+}\pi^{0}$ Cabibbo-favored state (CF) ADS like.
- Binning the phase space around the resonances.

Bin	resonance	c _i	s _i	
1	ω	$-1.11\pm0.09^{+0.02}_{-0.01}$	0.00	
2	$K^{*-}\rho^+$	$-0.30 \pm 0.05 \pm 0.01$	$-0.03 \pm 0.09^{+0.01}_{-0.02}$	
3	$K^{*+}\rho^{-}$	$-0.41 \pm 0.07^{+0.02}_{-0.01}$	$0.04 \pm 0.12^{+0.01}_{-0.02}$	
4	K*-	$-0.79 \pm 0.09 \pm 0.05$	$-0.44 \pm 0.18 \pm 0.06$	
5	K*+	$-0.62\pm0.12^{+0.03}_{-0.02}$	$0.42 \pm 0.20 \pm 0.06$	-0.5
6	K*0	$-0.19 \pm 0.11 \pm 0.02$	0.00	-1-
7	ρ^+	$-0.82 \pm 0.11 \pm 0.03$	$-0.11 \pm 0.19^{+0.04}_{-0.03}$	-15
8	ρ^{-}	$-0.63 \pm 0.18 \pm 0.03$	$0.23 \pm 0.41^{+0.04}_{-0.03}$	-1.5 -1 -0.5 0 0.5 1 1.5 c _i
9	remainder	$-0.69\pm0.15^{+0.15}_{-0.12}$	0.00	Figure : c; and s; results in various bins.

- Estimates of γ sensitivity with $B^{\pm} \rightarrow D(K_{\rm S}^0 \pi^+ \pi^- \pi^0) K^{\pm}$ give $\sigma_{\gamma} = 4.4^{\circ}$ with 50 ab⁻¹ data from Belle II.
 - Assumed $\epsilon \times BF$ similar to $K_{\rm S}^0 \pi^+ \pi^-$.
- Improvements expected with
 - knowledge of an amplitude model,
 - finer binning from a larger statistics (BES III).

⁹JHEP **01**, 82 (2018)

$D \rightarrow \pi^+\pi^-\pi^+\pi^-$

- All charged final state clean detection important for LHCb. (PLB 760 117 (2016))
- Binning based on amplitude model.
- Prominent contributions $a_1(1260)^+, \rho(770)^0.$

800

600 400

200

¹⁰JHEP **05**, 143 (2017)

4 0.6 0.8 1 min[m²($\pi^+\pi^-$)] (GeV²/c⁴)

100

$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- Binning guided by the amplitude model, but the measurement of c_i and s_i is still model-independent.
- 5D binning based on $\{m_+, m_-, \cos \theta_+, \cos \theta_-, \phi\}$.

• The sensitivity to γ with the obtained results:

Binning scheme	\mathcal{N}	$\sigma_{ m stat}(\gamma) \ \oplus \sigma_{ m had}(\gamma)$		
		LHCb Run II	LHCb Ph. 1 upgrade	
		8 fb^{-1}	50 fb ⁻¹	
Optimal	5	10.0⊕7.9	2.6⊕5.0	
Optimal alternative	5	9.7⊕7.4	2.5⊕4.4	

¹¹JHEP **01**, 144 (2018)

• *CP*-content of $\pi^+\pi^-\pi^+\pi^-$ mode - from *CP* and $K^0_{S,L}\pi^+\pi^-$ tags.

Figure : Average m_{bc} distributions for CP-even and CP-odd tags (non- K_L^0).

- $F_{+}^{4\pi} = 0.737 \pm 0.028$.
- Consistent results using amplitude model as well as c_i, s_i values.

¹²PLB **747**, 9 (2015)

$D \rightarrow K^- \pi^+ \pi^+ \pi^-$

• Coherence factor $R_{K3\pi}$ to treat like two-body with single effective strong phase δ_D in ADS formalism.

$$R_{K3\pi}e^{-i\delta_D^{K3\pi}} = \frac{\int A_{K^-\pi^+\pi^+\pi^-}^*(x)A_{K^+\pi^-\pi^+\pi^-}(x)dx}{A_{K^-\pi^+\pi^+\pi^-}A_{K^+\pi^-\pi^+\pi^-}}$$

• Modulates the interference term of the ADS input parameters - charge averaged rate R_{ADS} and partial rate asymmetry A_{ADS} .

¹³PLB **757**, 520 (2016)

R_{K3}

$D \rightarrow \pi^+ \pi^- \pi^0$

- Symmetry of the $\pi^+\pi^-\pi^0$ Dalitz plot indicates an isospin = 0 state. (PRL 99 251801 (2007))
- G-parity suggests an almost pure *CP*-even eigenstate.

(PRD 78 014015 (2008))

- With CP-eigenstates and $K_{\rm S,L}^0 \pi^+ \pi^-$ as tags, $F_+ =$ 0.973 \pm 0.017.
- Almost a pure CP-even state.
- Similar measurement for
 - $D \rightarrow K^+ K^- \pi^0$ yields
 - $F_+ = 0.732 \pm 0.055.$

- Quantum correlated decays exploited to get charm inputs for γ measurements.
- c_i , s_i : input for GGSZ method.

• Results for $K_{\rm S}\pi^+\pi^-$, $K_{\rm S}^0\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^+\pi^-$.

- Coherence factor *R* : for multibody ADS analyses.
 - $K^-\pi^+\pi^+\pi^-$ mode, with also inputs from charm mixing.
- *CP*-content *F*₊ : allows additional 3-body *D* modes in GLW formalism.
 - Modes $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$ are good additions.

 Precision on γ reaching O(1°).

Inputs from BES III bring more improvements.

Back-up slides

$D \rightarrow K^- \pi^+ \pi^+ \pi^-$

- $D \overline{D}$ mixing as input for γ measurements.
- Charm mixing results for $D
 ightarrow K\pi\pi\pi$ from LHCb (PRL 116, 24 (2016))

¹¹PLB **757**, 520 (2016).

$D \rightarrow K^+ K^- \pi^0$

- Smaller branching fraction of 0.33%.
- But relatively cleaner to detect experimentally.

¹⁰PLB **747**, 9 (2015) ¹²PLB **740**, 1 (2015) Figure : Average m_{bc} distributions for *CP*-even and *CP*-odd tags (non- K_L^0)

- $F_+ = 0.732 \pm 0.055$ with *CP*-eigenstates and $K^0_{\rm S,L}\pi^+\pi^-$ as tags.
- Predominantly *CP*-even.