Heavy Neutral Lepton Search at NA62

Nora Estrada-Tristán
on behalf of the NA62 Collaboration

Universidad Autónoma de San Luis Potosí
and Universidad de Guanajuato

FPCP 2018
Hyderabad, India
Outline

1. Kaon Experiment at CERN
2. Motivation
3. NA62: Beam and Detector
4. $K^+ \rightarrow \ell^+ N$: Analysis and Results
5. HNL prospects
6. Other Beyond-the-Standard Model particles
 - Beyond-Standard Model Particles
 - NA62 dump mode operation
7. Summary
Kaon Experiments at CERN

- **NA48** (1997-2001): Beam of K_L/K_S
 - Discovery of direct CPV
- **NA48/1** (2002): Beam of $K_S/\text{hyperons}$
- **NA48/2** (2003-2004): Beam of K^+/K^-
 - $K^\pm \rightarrow \mu^\pm N$, $N \rightarrow \mu \pi$
- **NA62-Rk** (2007-2008): Beam of K^+/K^-
 - $K^+ \rightarrow \mu^+ N$
- **NA62** (Since 2014): Beam of K^+
 - 2014: pilot run
 - 2015: Commissioning run
 - $K^+ \rightarrow \ell^+ N$
 - 2016-2018 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

NA62: ~ 200 participants, ~ 30 institutes
Kaon Experiments at CERN

- **NA48** (1997-2001): Beam of K_L/K_S
 - Discovery of direct CPV
- **NA48/1** (2002): Beam of K_S/hyperons
- **NA48/2** (2003-2004): Beam of K^+/K^-
 - $K^\pm \rightarrow \mu^\pm N, N \rightarrow \mu \pi$
- **NA62-R_k** (2007-2008): Beam of K^+/K^-
 - $K^+ \rightarrow \mu^+ N$
- **NA62** (Since 2014): Beam of K^+
 - 2014: pilot run
 - 2015: Commissioning run
 - $K^+ \rightarrow \ell^+ N$
 - 2016-2018 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

NA62: ~ 200 participants, ~ 30 institutes
Why looking for heavy neutrinos

Open Theoretical questions:
1. Neutrino oscillations \rightarrow non-zero neutrino masses
2. Why neutrinos are lighter than other leptons
3. Dark Matter \rightarrow no SM particle satisfies DM properties
4. Baryon asymmetry
5. ...

SM extensions: **Neutrino Minimal SM** (\(\nu\)MSM) ([Asaka et al., PLB 620 (2005) 17](#))
- 3 right-handed steril neutrinos \(N_i\) are added to SM, \(m_1 \sim 10\ \text{keV}, \ m_{2,3} \sim 1\ \text{GeV}\),
- \(N_1\) is a Dark Matter candidate
- \(N_{2,3}\) introduce extra CPV phases to account for Baryon Asymmetry and are responsible for SM neutrino masses (see-saw mechanism)
If \(m_N < M_{K^\pm} - m_{\ell^\pm} \), heavy neutrinos are observable via production in K leptonic decay processes (\(K^\pm \rightarrow \ell^\pm N \)).

\[
\Gamma(K^\pm \rightarrow \ell^\pm N) = \Gamma(K^\pm \rightarrow \ell^\pm \nu_\ell) \rho(m_N) |U_{\ell 4}|^2
\]

Where:
- \(\rho(m_N) \rightarrow \) Kinematic factor, phase space and helicity suppression
- \(|U_{\ell 4}|^2 \rightarrow \) Mixing matrix element

\(\rho_\mu(m_N) \times R_K \approx 2.5 \times 10^{-5} \)

R. Shrock PLB96 (1980) 159
Main goal
- 10% precision measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ see “J.Engelfried talk”

Beam Parameters
- Beam momentum: $75 \text{ GeV}/c(\pm 1\%)$
- Positive Beam: $\sim 6\%K^+$
- nominal intensity 750 MHz

Main subdetectors
- Trackers: Si pixel beam tracker(GTK), Straw tubes spectrometer (STRAW)
- Hermetic veto detectors:
 - Photon vetoes: LAV,LKr, IRC, SAC
 - Muon vetoes: MUV
- Particle identification:
 - Beam (kaons): KTAG
 - $\pi/\mu/e$: RICH, LKr, MUV

Data taking conditions for 2015
- Minimun bias data: taken at 1% of nominal beam intensity
- Beam tracker not available: kaon momentum estimated as beam average
$K^+ \rightarrow \ell^+ N$: selection criteria

Event selection: $K^+ \rightarrow e^+ N \quad K^+ \rightarrow \mu^+ N$

- single positive charged track in the spectrometer
- KTAG kaon signal
- no activity in photon-vetoes and CHANTI
- decay vertex in the fiducial decay region
- single cluster in LKr, no signal in muon detectors (e^+)
- signal in muon detectors (μ^+)
- E/p and RICH ($p<40$ GeV/c) to differentiate e^+ from μ^+

HNL production signal: peaks in $m_{\text{miss}}^2 = (P_{K^+} - P_{\ell^+})^2$ distributions

SM signal regions:
- e^+: $|m_{\text{miss}}^2| < 0.014 \text{GeV}^2/c^4$
- μ^+: $|m_{\text{miss}}^2| < 0.020 \text{GeV}^2/c^4$

HNL signal regions:
- e^+: $170 < m_{\text{miss}} < 448 \text{MeV}/c^2$

 \[
 (0.029 < |m_{\text{miss}}^2| < 0.2 \text{GeV}^2/c^4)
 \]
- μ^+: $250 < m_{\text{miss}} < 373 \text{MeV}/c^2$

 \[
 (0.062 < |m_{\text{miss}}^2| < 0.14 \text{GeV}^2/c^4)
 \]
\(K^+ \rightarrow \ell^+ N \): measurement principle

- \(K^+ \rightarrow \ell^+ N \) decay rates measured with respect to the normalization SM \(K^+ \rightarrow \ell^+ \nu \)
- similar topologies and known branching fractions
- HNL signal events \(N^\ell_{\text{sig}} \) given by \(BR(K^+ \rightarrow \ell^+ N) \) assumptions and \(A^\ell_N \) acceptances of the \(K^+ \rightarrow \ell^+ N \) selections
 \[
 N^\ell_{\text{sig}} = N^\ell_K \cdot BR(K^+ \rightarrow \ell^+ N) \cdot A^\ell_N
 \]
- HNL search strategy: scan of \(m_{\text{miss}} = \sqrt{(P_K - P_{\ell^+})^2} \) distributions
 - 1\(\text{MeV}/c^2 \) step for mass scans in the HNL signal regions
 - search window size for each HNL mass hypothesis given by HNL mass resolution: \(|m - m_N| < 1.5\sigma_m \)
- statistical analysis
- HNL detailed MC simulation
 - HNL mass resolution \(\sigma_m \) vs HNL mass
 - selection acceptance vs HNL mass
$K^+ \rightarrow \ell^+ N$ search results: limits

Single event sensitivities of $O(10^{-8})$

- $N_{obs} \rightarrow$ Number of observed events in each HN mass hypothesis evaluated within $\pm 1.5\sigma_m$, with $1\,\text{MeV}/c^2$ mass scan step signal window
- $N_{exp} \rightarrow$ number of expected Background, evaluated using data for each HNL mass hypothesis with m_{miss} distribution sidebands using polynomial fitting

Statistical significance never exceeds 2.2σ:

- **No HNL signal observed**

N_{obs}, N_{exp} and δN_{exp} converted into confidence levels assuming Poissonian/Gaussian distributions for both distributions using Rolke-Lopez method to compute *90% CL*
$K^+ \rightarrow \ell^+ N$ search results: limits on $|U_{\ell 4}|$

$K^+ \rightarrow e^+ N$ \quad NA62-2015

Limit improved in a large mass range at the level of 10^{-7}

- $K^+ \rightarrow \mu^+ N$ \quad $250 \leq m_N \leq 373 \text{ MeV}/c^2$
- $K^+ \rightarrow e^+ N$ \quad $170 \leq m_N \leq 448 \text{ MeV}/c^2$

HNL prospects with total data sample

2016 - 2018 data set

- Beam Tracker (GTK) in operation
 - Factor ~ 2 improvement in mass resolution
 - Factor ~ 3 lower background in $K^+ \rightarrow e^+ N$
 - Lower background from upstream decays in $K^+ \rightarrow \mu^+ N$
- Larger data set

Sensitivity better than 10^{-8} for $|U_{\mu 4}|^2$ and $|U_{e 4}|^2$

Larger data sets already collected. Analysis in progress
Beyond-Standard Model Model Particles

- **Dark Photon**
 - Multiple limits assuming decays into SM particles, including:
 \[K^\pm \rightarrow \pi^\pm \pi^0, \pi^0 \rightarrow \gamma A', \]
 \[A' \rightarrow e^+ e^- \] from NA48/2
 - **Forbidden \(K^+ \) decay searches**
 - **Goal:** Improve over most existing limits
 - Search for the LNV decay
 \[K^+ \rightarrow \pi^- \mu^+ \mu^+ \]
 - Search for the LNV decay
 \[K^+ \rightarrow \pi^- e^+ e^+ \]
 - Search for the LNV/LFV decay
 \[K^+ \rightarrow \pi e \mu, \text{including } \pi^+ \pi^0 \text{ with } \pi^0 \rightarrow \mu e \]
 - Searches for \(K^+ \rightarrow \mu^- \nu e^+ e^+ \) and \(K^+ \rightarrow e^- \nu \mu^+ \mu^+ \)
 - Searches for \(\Delta S = \Delta Q \) violating decays
 \[K^+ \rightarrow \pi^+ \pi^+ e^- \nu \] and
 \[K^+ \rightarrow \pi^+ \pi^+ \mu^- \nu \]
NA62 dump mode operation

- TAXes (2 collimators): sliding copper and iron collimators, $2 \times 10.7 \lambda_I$ thick, higher Z than Be target, closer to the decay region → **DUMP**
- Easy to switch between K^+ beam and proton dump mode with TAXes
- Short dedicated runs in dump-mode with special low-bandwidth triggers
- Preliminary studies of background, rates and topologies have been performed: rejection power down to zero bkg at $\sim 4 \times 10^{15}$ POT for fully reconstructed di-muon final states
- **HNL** and Axion-like particles
Summary

- NA62 searches for HNL production in K^+ decays were presented:
 - No heavy neutrino signal observed

 - $N_K \sim 4 \times 10^8$ kaon decays in the fiducial volume
 - Set limits on $|U_{i4}|^2$

- NA62 physics run in progress up to 2018: a large sample of K^+ data in being collected

 - Main goal of measuring $BR(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% accuracy
 - Broad program of rare decay measurements, hidden sector particles and LF/LN violation