

Heavy Neutral Lepton Search at NA62

Nora Estrada-Tristán on behalf of the NA62 Collaboration

Universidad Autónoma de San Luis Potosí and Universidad de Guanajuato

> FPCP 2018 Hyderabad, India

Outline

Kaon Experiment at CERN

- Motivation
- 3 NA62: Beam and Detector
- 4 $K^+ \rightarrow \ell^+ N$: Analysis and Results
- 5 HNL prospects
- Other Beyond-the-Stardard Model particles
 - Beyond-Standard Model Particles
 - NA62 dump mode operation

Summary

Kaon Experiments at CERN

NA62: ~ 200 participants, ~ 30 institutes

NA48 (1997-2001): Beam of K₁ / K_S

Discovery of direct CPV

- NA48/1 (2002): Beam of K_s/hyperons
- NA48/2 (2003-2004): Beam of K⁺/K⁻

• $K^{\pm} \rightarrow \mu^{\pm} N, N \rightarrow \mu \pi$

● NA62-*R*_k (2007-2008): Beam of *K*⁺/*K*[−]

• $K^+ \rightarrow \mu^+ N$

 NA62 (Since 2014): Beam of K⁺ 2014: pilot run 2015: Commissioning run

• $K^+ \rightarrow \ell^+ N$

2016-2018 $K^+
ightarrow \pi^+
u ar{
u}$

Kaon Experiments at CERN

NA62: ~ 200 participants, ~ 30 institutes

NA48 (1997-2001): Beam of K₁ / K_S

Discovery of direct CPV

- NA48/1 (2002): Beam of K_s/hyperons
- NA48/2 (2003-2004): Beam of K⁺/K⁻

• $K^{\pm} \rightarrow \mu^{\pm} N, N \rightarrow \mu \pi$

● NA62-*R_k* (2007-2008): Beam of *K*⁺/*K*[−]

• $K^+ \rightarrow \mu^+ N$

 NA62 (Since 2014): Beam of K⁺ 2014: pilot run 2015: Commissioning run

• $K^+ \rightarrow \ell^+ N$

2016-2018 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Why looking for heavy neutrinos

Open Theoretical questions:

- 1 Neutrino oscillations \rightarrow non-zero neutrino masses
- Why neutrinos are lighter than other leptons
- \bigcirc Dark Matter \rightarrow no SM particle satisfies DM properties
 - Baryon asymmetry
- 5 ...

SM extentions: Neutrino Minimal SM (νMSM) (Asaka et al., PLB 620 (2005) 17)

- 3 right-handed steril neutrinos N_i are added to SM, $m_1 \sim 10$ keV, $m_{2,3} \sim 1$ GeV,
- N₁ is a Dark Matter candidate
- $N_{2,3}$ introduce extra CPV phases to account for Baryon Assymmetry and are responsible for SM neutrino masses (see-saw mechanism)

HNL observable via production

If $m_N < M_{K^{\pm}} - m_{\ell^{\pm}}$, heavy neutrinos are observable via **production** in K leptonic decay processes $(K^{\pm} \rightarrow \ell^{\pm} N)$ $\Gamma(K^{\pm} \rightarrow \ell^{\pm} N) =$ $\Gamma(K^{\pm} \rightarrow \ell^{\pm} \nu_{\ell})\rho(m_N)|U_{\ell^4}|^2$ Where: • $\rho(m_N) \rightarrow$ Kinematic factor, phase space and helicity suppression • $|U_{\ell^4}|^2 \rightarrow$ Mixing matrix element $p_{\ell^2}(m_N) = \frac{1}{100} \frac{1}{100}$

R. Shrock PLB96 (1980) 159

NA62: Beam and Detector

Main subdetectors

- Trackers: Si pixel beam tracker(GTK), Straw tubes spectrometer (STRAW)
- Hermetic veto detectors:
 - Photon vetoes: LAV,LKr, IRC, SAC
 - Muon vetoes: MUV
- Particle identification:
 - Beam (kaons): KTAG
 - $\pi/\mu/e$: RICH, LKr, MUV

Main goal

• 10% precision measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ see "J.Engelfried talk"

Beam Parameters

- Beam momentum: 75 $GeV/c(\pm 1\%)$
- Positive Beam: $\sim 6\% K^+$
- nominal intensity 750 MHz

Data taking conditions for 2015

- Minimun bias data: taken at 1% of nominal beam intensity
- Beam tracker not available: kaon momentum estimated as beam average

$K^+ \rightarrow \ell^+ N$: selection criteria

Event selection: $K^+ \rightarrow e^+ N \quad K^+ \rightarrow \mu^+ N$

- single positive charged track in the spectrometer
- KTAG kaon signal
- no activity in photon-vetoes and CHANTI
- decay vertex in the fiducial decay region
- single cluster in LKr, no signal in muon detectors (e⁺)
- signal in muon detectors (μ^+)
- E/p and RICH (p<40 GeV/c) to differentiate e^+ from μ^+

HNL production signal: peaks in $m_{miss}^2 = (P_{K^+} - P_{\ell^+})^2$ distributions

SM signal regions:

• e^+ : $|m_{miss}^2| < 0.014 GeV^2/c^4$ • μ^+ : $|m_{miss}^2| < 0.020 GeV^2/c^4$

HNL signal regions:

- e^+ : 170 < m_{miss} < 448 MeV/c^2 (0.029 < $|m_{miss}^2|$ < 0.2 GeV^2/c^4)
- μ^+ : 250 < m_{miss} < 373 MeV/c^2 (0.062 < $|m_{miss}^2|$ < 0.14 GeV^2/c^4)

$K^+ \rightarrow \ell^+ N$: measurement principle

• $K^+ \to \ell^+ N$ decay rates measured with respect to the normalization SM $K^+ \to \ell^+ \nu$

- similar topologies and known branching fractions
- HNL signal events N^ℓ_{sig} given by BR(K⁺ → ℓ⁺N) assumptions and A^ℓ_N acceptances of the K⁺ → ℓ⁺N selections

•
$$N_{sig}^{\ell} = N_{K}^{\ell} \cdot BR(K^{+} \rightarrow \ell^{+}N) \cdot A_{N}^{\ell}$$

- HNL search strategy: scan of $m_{miss} = \sqrt{(P_K P_{\ell^+})^2}$ distributions
 - $1 MeV/c^2$ step for mass scans in the HNL signal regions
 - search window size for each HNL mass hypothesis given by HNL mass resolution: $|m m_N| < 1.5\sigma_m$
 - statistical analysis

• HNL detailed MC simulation

- HNL mass resolution σ_m vs HNL mass
- selection acceptance vs HNL mass

$K^+ \rightarrow \ell^+ N$ search results: limits

Single event sensitivities of $O(10^{-8})$

- $N_{obs} \rightarrow N$ umber of observed events in each HN mass hypothesis evaluated within $\pm 1.5\sigma_m$, with $1MeV/c^2$ mass scan step signal window
- $N_{exp} \rightarrow$ number of expected Background, evaluated using data for each HNL mass hypothesis with m_{miss} distribution sidebands using polynomial fitting

Statistical significance never exceeds 2.2σ :

\rightarrow No HNL signal observed

 N_{obs} , N_{exp} and δN_{exp} converted into confidence levels assuming Poissonian/Gaussian distributions for both distributions using Rolke-Lopez method to compute 90% CL Kaon Experiment at CERN

$K^+ \rightarrow \ell^+ N$ search results: limits on $|U_{\ell 4}|$

$K^+ \rightarrow e^+ N$ NA62-2015

Limit improved in a large mass range at the level of $10^{-7} \label{eq:large}$

•
$$K^+ \to \mu^+ N$$
 250 $\le m_N \le$ 373 Mev/c^2

•
$$K^+ \to e^+ N$$
 170 $\leq m_N \leq$ 448 Mev/c^2

NA62 Collaboration, Phys.Lett.B778 (2018) 137

HNL prospects with total data sample

2016 - 2018 data set

- Beam Tracker (GTK) in operation
 - Factor ~ 2 improvement in mass resolution
 - Factor \sim 3 lower background in $K^+ \rightarrow e^+ N$
 - Lower background from upstream decays in ${\cal K}^+ o \mu^+ {\it N}$
- Larger data set

Sensitivity better than 10^{-8} for $|U_{\mu4}|^2$ and $|U_{e4}|^2$ Larger data sets already collected. Analysis in progress

Beyond-Standard Model Particles

Dark Photon

Multiple limits assuming decays into SM particles, including K[±] → π[±]π⁰, π⁰ → γA', A' → e⁺e⁻ from NA48/2 Phys.Lett. B746 (2015) 178
 NA62: search for K⁺ → π⁺π⁰, π⁰ → γA', A' → invisible

- Forbidden K⁺ decay searches
 Goal: Improve over most existing limits
 - Search for the LNV decay ${\cal K}^+ \to \pi^- \mu^+ \mu^+ \label{eq:K}$
 - Search for the LNV decay ${\cal K}^+ o \pi^- e^+ e^+$
 - Search for the LNV/LFV decay $K^+ \rightarrow \pi e \mu$, including $\pi^+ \pi^0$ with $\pi^0 \rightarrow \mu e$
 - Searches for $K^+ \to \mu^- \nu e^+ e^+$ and $K^+ \to e^- \nu \mu^+ \mu^+$
 - searches for $\Delta S = \Delta Q$ violating decays $K^+ \rightarrow \pi^+ \pi^+ e^- \nu$ and $K^+ \rightarrow \pi^+ \pi^+ \mu^- \nu$

NA62 dump mode operation

- TAXes (2 collimators): sliding copper and iron collimators, $2 \times 10.7\lambda_I$ thick, higher Z than Be target, closer to the decay region $\rightarrow \text{DUMP}$
- Easy to switch between K^+ beam and proton dump mode with TAXes
- Short dedicated runs in dump-mode with special low-bandwidth triggers
- Preliminary studies of background, rates and topologies have been performed: rejection power down to zero bkg at ~ 4 × 10¹⁵ POT for fully reconstructed di-muon final states
- HNL and Axion-like particles

Summary

- NA62 searches for HNL production in K⁺ decays were presented: No heavy neutrino signal observed
 NA62 Collaboration, Phys.Lett.B778 (2018) 137
 - $N_{
 m K} \sim 4 imes 10^8$ kaon decays in the fiducial volume
 - Set limits on $|U_{I4}|^2$

• NA62 physics run in progress up to 2018: a large sample of K^+ data in being collected

- Main goal of measuring $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% accuracy
- Broad program of rare decay measurements, hidden sector particles and LF/LN violation