Time dependent CPV in the beauty sector

SEAN BENSON, ON BEHALF OF THE LHCB, BABAR AND BELLE COLLABORATIONS FPCP – 2018 (GET WELL SOON MARKUS)

Introduction

CP asymmetry as a function of decay time for $B_{(s)}$ mesons decaying to a CP eigenstate f:

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\bar{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{-C_{f}\cos(\Delta m_{d,s}t) + S_{f}\sin(\Delta m_{d,s}t)}{\cosh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right)},$$
$$C_{f} \equiv \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}, \qquad S_{f} \equiv \frac{2\mathrm{Im}\lambda_{f}}{1 + |\lambda_{f}|^{2}}, \qquad A_{f}^{\Delta\Gamma} \equiv -\frac{2\mathrm{Re}\lambda_{f}}{1 + |\lambda_{f}|^{2}}, \qquad \lambda_{f} \equiv \frac{q}{p}\frac{\bar{A}_{f}}{A_{f}}$$

where p, q relate the flavour and mass eigenstates of B mesons.

Assuming $|p/q| \sim 1$:

- C_f measures direct CPV
- Sf measures indirect CPV

Why TD CPV?

Allows access to measurement of the interference between mixing and decay diagrams.

Neutral B meson mixing is an example of a FCNC interaction

=> Forbidden at tree level in the SM Gives room for possible BSM contributions <u>Phys.Rev. D97 (2018) no.1, 015021</u>

$$B_{s} \xrightarrow{\phi_{D}} \chi^{CP}$$

$$\phi_{M} \xrightarrow{B_{s}} -\phi_{D}$$

$$\phi_{S} = \phi_{M} - 2\phi_{D}$$

Why TD CPV (part 2)?

Talk from Arantza describes in detail anomalies from B->sll transitions <u>https://indico.cern.ch/event/698482/contributions/3063959/</u>

Theories explaining anomalies have to deal with constraints from precision measurements in B_{s} mixing

Di Lucio, Kirk & Lenz -Phys. Rev. D 97, 095035 (2018)

Example here for scalar leptoquark

$$\mathcal{L}_{S_3} = -M_{S_3}^2 |S_3^a|^2 + y_{i\alpha}^{QL} \overline{Q^c}^i (\epsilon \sigma^a) L^\alpha S_3^a + \text{h.c.}$$

Couplings also contribute to the mixing Lagrangian

$$\begin{aligned} \mathcal{L}_{\Delta B=2}^{\rm NP} &= -\frac{4G_F}{\sqrt{2}} \left(V_{tb} V_{ts}^* \right)^2 \left[C_{bs}^{LL} \left(\bar{s}_L \gamma_\mu b_L \right)^2 + \text{h.c.} \right. \\ C_{bs}^{LL} &= \frac{\eta^{LL} (M_{S_3})}{4\sqrt{2}G_F M_{S_3}^2} \frac{5}{64\pi^2} \left(\frac{y_{3\alpha}^{QL} y_{2\alpha}^{QL*}}{V_{tb} V_{ts}^*} \right)^2 \end{aligned}$$

Challenges of TD CPV

Below is a typical term in a TD analysis Flavour-tagging $\Im(A_{\parallel}(t)^*A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|\{(1-2\omega)e^{-\Gamma_s t}[\sin \delta_1 \cos(\Delta m_s t) - \cos \delta_1 \sin(\Delta m_s t) \cos \phi_s] - \frac{1}{2}\cos \delta_1(e^{-\Gamma_H t} - e^{-\Gamma_L t})\sin \phi_s\}$ CPV B_s decay rates

TD measurements require:

- Accurate decay time resolution
- Good understanding of acceptances
- Flavour tagging...

Challenges of flavour tagging

Requires reconstruction of other decays in the event.

- B factories ~30%
- LHCb ~4-6%

Note on conventions...

Note that for the case of FCNC Bs decays, the CP-violating phase is denoted as ϕ_s^{sqqbar} where sqqbar is the final state of the quark level transition.

Introduction - B_a^0 mesons oscillations

B_s mixing

- LHCb measurement of -10±39 mrad dominates the global fit PRL 114 (2015) 04180
- Constraining power of the measurement will increase as LHC accumulates more data.
- Attention turns more to control of penguin pollution (and of course Run 2 data)...

$$\phi_{s,i} = -2\beta_s + \phi_s^{\text{BSM}} + \Delta \phi_{s,i}^{J/\psi\phi}(a'_i, \theta'_i)$$

See <u>talk of K. Gizdov</u>

invariant mass m decay time t See <u>talk of E. Bertholet</u> B->hh CP flavour tagging assignment ξ predicted mista arXiv:1805.06759 (submitted to PRD) • final state (for $K\pi$) ψ LHCb-PAPER-2018-006 3fb⁻¹ from Run I c^2 5 MeV/c 2500 5 MeV/ 3000 Signal yields LHCb LHCb 2000 $N(B^0 \to \pi^+\pi^-) = 28650 \pm 230$ $B^0 \rightarrow \pi^+ \pi^ B_s^0 \rightarrow K^+ K^-$ Candidates / 2000 Candidates $B_s^0 \rightarrow \pi^+ \pi^ B^0 \rightarrow K^+ \pi^-$ 1500 $N(B_s^0 \to K^+ K^-) = 36840 \pm 220$ $\Lambda^0_h \rightarrow p K^-,$ $B^0 \rightarrow K^+ \pi^ B^0 \rightarrow K^+ K^-$ 1000 $N(B^0 \to K^+\pi^-) = 94220 \pm 340$ 3-Body bkg. 3-Body bkg. 1000 Comb. bkg. Comb. bkg. $N(B_s^0 \to \pi^+ K^-) = 7030 \pm 120$ 500 05 5.2 5.4 5.6 5 5.2 5.4 5.6 5.8 5 $m_{\pi^{+}\pi^{-}}$ [GeV/ c^{2}] $m_{K^+K^-} [\text{GeV}/c^2]$

combinatorial reduced with BDT Trained with upper mass sideband

- Topological and kinematic information

cross feeds chosen with PID to be ~10% of signal yields

B->hh CPV

- **Fit observables**
 - invariant mass *m*
 - decay time t
 - predicted decay time error δ_t
 - flavour tagging assignment ξ
 - predicted mistag probability η
 - final state (for $K\pi$) ψ

Fit obserSignal yields

invariant $\mathcal{M}(B^{9S}, \mathfrak{m}^{+}\pi^{-}) = 28650 \pm 230$ decay time t_{0} $\mathcal{N}(B_{s}^{0} \rightarrow K^{+}K^{-}) = 36840 \pm 220$ predicted decay time error δt flavour tagging assignment ζ = 340 predicted $\mathcal{M}(B_{s}^{0} tag \pi h \delta b) a \pm i \mathcal{N}(B_{s}$

 $A_{CP}^{B^0} = -0.084 \pm 0.004 \pm 0.003$

 $A_{CP}^{B_S^0} = 0.213 \pm 0.015 \pm 0.007$

 $C_{\pi^+\pi^-} = -0.34 \pm 0.06 \pm 0.01$

 $S_{\pi^+\pi^-} = -0.63 \pm 0.05 \pm 0.01$

 $C_{K^+K^-} = 0.20 \pm 0.06 \pm 0.02$

 $S_{K^+K^-} = 0.18 \pm 0.06 \pm 0.02$

 $A_{\kappa+\kappa-}^{\Delta\Gamma} = -0.79 \pm 0.07 \pm 0.10$ 1st measurement

Fixed parameters (HFLAV values)

Parameter	Value			
Δm_d	$0.5065 \pm 0.0019 \mathrm{ps}^{-1}$			
Γ_d	$0.6579 \pm 0.0017 \mathrm{ps}^{-1}$			
$\Delta\Gamma_d$	0			
Δm_s	$17.757 \pm 0.021 \ \mathrm{ps}^{-1}$			
Γ_s	$0.6654 \pm 0.0022 \mathrm{ps}^{-1}$			
$\Delta\Gamma_s$	$0.083 \pm 0.007 \ \mathrm{ps}^{-1}$			
$ ho(\Gamma_s, \Delta\Gamma_s)$	-0.292			

Most accurate measurement from a single experiment

FLAV averages (not including these results):

13

$B_s \rightarrow K\pi K\pi - pure penguins$

parameter \mathcal{A}_f using the fina

the Belle detector at the KEK

Background rejection at the B factories $K_S^0, \psi(2S)K_S^0, \chi_{c1}K_S^0$ of the accompanying B meso

Time dependent measurements at the B factories

General time dependent form then becomes:

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[\mathcal{S}\sin(\Delta m_d \Delta t) + \mathcal{A}\cos(\Delta m_d \Delta t) \right] \right\}$$

TD CPV in B->K_S $\eta\gamma$

cos(2β) measurement using B->D(*)h⁰

arXiv:1804.06152, arXiv:1804.06153

Extract signal by 3D fit of beam-constrained mass M'bc, energy-difference ΔE , and NN'out.

Perform measurement by maximising the combined log-likelihood function Physics PDFs are convoluted with specific resolution functions: Apply BaBar and Belle specific resolution models and flavour tagging algorithms

$$P_{sig}(\Delta t) \propto \left[|\mathcal{A}_{\bar{D}^0}|^2 + |\mathcal{A}_{D^0}|^2 \right]$$

$$= S \sin \Delta m \Delta t \qquad + \mp \left(|\mathcal{A}_{\bar{D}^0}|^2 \mathbf{A} (28 \Delta \eta^2) \cos(\Delta m \Delta t) \right)$$

$$\xrightarrow{\text{resc}} \Delta m \text{ induced CPV}_{\pm 2\eta_{h^0}} \left(-\frac{direct}{1} CPV_{\Delta D^0} \mathcal{A}_{\bar{D}^0}^* \right) \cos(2\beta) - \text{Re} \left(\mathcal{A}_{D^0} \mathcal{A}_{\bar{D}^0}^* \right) \sin(2\beta) \right] \sin(\Delta m \Delta t)$$

$$\xrightarrow{\text{resc}} \Delta m \text{ induced of eigenstates}$$

$$\xrightarrow{\text{S. Bensed}} - \frac{\text{Boutty TD CPV}}{t} \quad \mathbf{d} \quad$$

$cos(2\beta)$ measurement using B->D^(*)h⁰

Prospects for the future

All LHCb results presented here can be updated with more Run 2 data

Mode	Presented σ	Projected σ end Run 2		
B _s ->J/ψφ	0.05 rad	0.03 rad		
B _s ->φφ	0.13 rad	0.10 rad		
B _s ->K*K*	0.11 rad	0.07 rad		
Bs->KK	0.06	0.04		

And after this the future gets even brighter...

The LHCb Upgrade

The LHCb Upgrade 1) Full software trigger

- · Allows effective operation at higher luminosity
- Improved efficiency in hadronic modes
- 2) Raise operational luminosity to 2 x 10³³ cm⁻² s⁻¹
- Necessitates redesign of several sub-detectors

• overhaul of readout

Upgrade + run 2 yield in hadronic modes ~ 60x that of run 1

See talk of T. Szumlak

Belle II

Improvements wrt Belle I: $K_s/\pi^{_0}$ efficiency, IP and vertex efficiency, K/ π separation, Hadron & muon ID in endcaps

Future physics improvements

Key take-away facts:

Belle II:

~50x more than BaBar + Belle, plus benefit from several detector improvements.

LHCb Upgrade (+ run 2):

~60x more than LHCb run 1 in hadronic modes ~30x more than LHCb run 1 in muonic modes,

where the difference is driven by the use of a full software trigger. Order of magnitude improvement in precision expected

- I have been privileged to give a review of TD CPV in B decays on behalf of LHCb, BaBar, and Belle.
- TD CPV in B decays is important as it places strong constraints on BSM models describing, in addition to potentially revealing BSM physics when going to high precision.
- Results shown at this conference demonstrate we are on the way there.
 - Indeed the new analyses with BaBar and Belle datasets show the immense value of such data.
- Upgrades of experiments will prove very valuable.

Backup

The LHCb Upgrade

will take data at luminosity of 2x10³³ cm⁻²s⁻¹ although LHCb currently runs at 2x the design luminosity anyway...

Why a B factory?

B physics at the Y(4S) presents several advantages over the hadronic environment at the LHC

- Can reconstruct full event, which is beneficial for missing energy modes and also inclusive measurements (lower theory uncertainties).
- Low multiplicity environment permits excellent performance for final states with π^0 s, n's, photons. Also, good efficiency for long-lived particles KS and KL. 0.8 ps
- Coherent B⁰B⁰bar production at Y(4S) makes flavour tagging easier and compensates for lower sample sizes in time-dependent CP measurements
 - B factories had a x5 better FT power than • LHCb

0.8 ps e.g. in sin2 β measurement with B⁰ \rightarrow J/ ψ K_S ε (tag effective) BaBar ~ 31 % [PRD 79 (2009) 07 200 ε (tag effective) LHCb ~ 3 % [PRL 115 (2015) 031 5

Asymmetry

SuperKEKB

Timeline:

Now: beams circulating

2018: First collisions

2019: Target collisions with full detector

2024: Iuminosity of 8 x 10³⁵cm⁻²s⁻¹ and 50 ab⁻¹

40x increase on KEKB 1/20 beam size 2x beam current

Future physics improvements

arXiv:1208.3355.if re-made with current

numbers the argument would remain]

73 (2013) 2373;

EPJ

'old' table from

Predictions exist for the expected accuracy in the form of the implications workshop document

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	6.4×10^{-3} [18]	$0.6 imes10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	_	5%	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08[14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s o \mu^+ \mu^-)$	1.5×10^{-9} [2]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+\mu^-)/\mathcal{B}(B^0_s \to \mu^+\mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10-12^{\circ}$ [19, 20]	4°	0.9°	negligible
triangle	$\gamma \ (B^0_s \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [18]	$0.40 imes 10^{-3}$	$0.07 imes 10^{-3}$	_
$C\!P$ violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_