

Alexander Huss

 $p_{
m T}^{
m Z}$ and $p_{
m T}^{
m W}$ theory meeting CERN - January 25th 2018

work with A. Gehrmann–De Ridder, T. Gehrmann, E.W.N. Glover, and D.M. Walker.

Motivation

$$p p \rightarrow Z/\gamma^* + X \rightarrow \ell^- \ell^+ + X$$

- large cross section
- clean leptonic signature

recoil \rightsquigarrow sensitivity to α_s , gluon PDF

- fully inclusive w.r.t. QCD radiation
- only reconstruct ℓ^+ , ℓ^-
 - → sub-% accuracy!
- important constraints in PDF fits [Boughezal et al. '17]

Inclusive $p_{\mathrm{T}}^{\mathrm{Z}}$ at fixed order

probe various aspects:

- very low p^Z_T: non-perturbative effects
- low $p_{\rm T}^{\rm Z} \lesssim 20\text{--}50~{\rm GeV}$: resummation required
- ▶ $p_{\rm T}^{\rm Z} \gtrsim 20\text{-}50 \; {\rm GeV}$: fixed-order prediction
- high $p_{\rm T}^{\rm Z} \gtrsim 500 {\rm ~GeV}$: EW corrections

Inclusive $p_{\mathrm{T}}^{\mathrm{Z}}$ at fixed order

Inclusive p_{T} spectrum of Z/γ^{*}

[Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan '16]

$$\frac{1}{\sigma} \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{Z}}}$$

removes luminosity error (~ 3%)

– NLO

undershoots data by 5-10%

NNLO

significant improvement in Data vs. Theory comparison

- + EW corrections: ----[Denner, Dittmaier, Kasprzik, Mück '11]
- $\Rightarrow \text{ large impact in the high-} p_{\rm T} \text{ tail} \\ \sim -20\% \text{ for } p_{\rm T}^{\rm Z} \sim 900 \text{ GeV} \\ \text{(Sudakov logatithms)}$

Inclusive p_{T} spectrum of W^{\pm}

Ratio of $p_{\rm T}$ spectra: Z/W

Ratio of $p_{ m T}$ spectra: m Z/W

Summary & Outlook

Summary

- ► $V + \text{jet} @ \text{NNLO} ~ \rightsquigarrow ~ p_{\text{T}}^{V} \text{ spectrum at } \mathcal{O}(\alpha_{\text{s}}^{3}) \text{ for } p_{\text{T}}^{V} > p_{\text{T,cut}}^{V}$
 - $\,\,\hookrightarrow\,\,$ significant reduction in scale uncertainties
 - $\,\,\hookrightarrow\,\,$ substantial improvement in theory vs. data comparison
- ▶ Ratios of p_{T}^{V} spectra
 - \hookrightarrow uncorrelated scale variation with: $\frac{1}{2} \leq \mu/\mu' \leq 2 \quad \forall$ scale pairs
 - $\,\,\hookrightarrow\,\,$ scale uncertainties reduced by typically a factor of two or more
 - $\,\,\hookrightarrow\,\,$ remarkable stability w.r.t. QCD corrections

Outlook

- matching to resummation
- extend MiNLO ~> MiNNLO
- inclusion of EW corrections

Summary & Outlook

Summary

- $\blacktriangleright V + \text{jet} @ \mathsf{NNLO} \quad \rightsquigarrow \quad p_{\mathrm{T}}^{V} \text{ spectrum at } \mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right) \text{ for } p_{\mathrm{T}}^{V} > p_{\mathrm{T,cut}}^{V}$
 - $\,\,\hookrightarrow\,\,$ significant reduction in scale uncertainties
 - $\,\,\hookrightarrow\,\,$ substantial improvement in theory vs. data comparison
- Ratios of p_{T}^{V} spectra
 - \hookrightarrow uncorrelated scale variation with: $rac{1}{2} \leq \mu/\mu' \leq 2 \quad orall$ scale pairs
 - $\,\,\hookrightarrow\,\,$ scale uncertainties reduced by typically a factor of two or more
 - $\,\,\hookrightarrow\,\,$ remarkable stability w.r.t. QCD corrections

Outlook

- matching to resummation
- extend MiNLO ~> MiNNLO
- inclusion of EW corrections

Thank you

Backup Slides

CMS: ratio W^-/W^+

Ratios — correlated vs. uncorrelated (ang. coefficients)

correlated:

uncorrelated:

LO α_s cancels in correlated case → almost no scale bands
 Substantial differences in correlated vs. uncorrelated
 NNLO similar uncertainty estimates

uncorrelated exhibits more realistic behaviour \rightsquigarrow default choice