$\begin{array}{l} Review \ of \ approximations: \\ q_T \ resummation \ at \ NNLO+NNLL \ QCD \ with \ DYRes \end{array}$

Giancarlo Ferrera

Milan University & INFN Milan

 $p_{\mathsf{T}_{\mathsf{Z}}}$ and $p_{\mathsf{T}_{\mathsf{W}}}$ theory meeting – CERN – January 25 2018

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \left[c_{12}L_{q_{T}}^{2} + c_{11}L_{q_{T}} + \cdots \right] + \alpha_{S}^{2} \left[c_{24}L_{q_{T}}^{4} + \cdots + c_{21}L_{q_{T}} + \cdots \right] + \mathcal{O}(\alpha_{S}^{3})$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1$.

Resummation of logarithmic corrections needed.

Fixed-order perturbative expansion reliable only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_{T}^{2}} d\bar{q}_{T}^{2} \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_{T}^{2}} \sim 1 + \alpha_{S} \left[c_{12} \mathcal{L}_{q_{T}}^{2} + c_{11} \mathcal{L}_{q_{T}} + \cdots \right] \\ + \alpha_{S}^{2} \left[c_{24} \mathcal{L}_{q_{T}}^{4} + \cdots + c_{21} \mathcal{L}_{q_{T}} + \cdots \right] + \mathcal{O}(\alpha_{S}^{3})$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gg 1$.

Resummation of logarithmic corrections needed.

NNLO QCD predictions at large q_T

 $Z q_T$ spectrum ($q_T > 20 \ GeV$).

\rightarrow see A. Huss talk

- ATLAS data ($\sqrt{s} = 8 \text{ TeV}$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_5^3)$) QCD predictions [G.-DeRidder, Gehrmann, Glover, Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).
- Agreement between data and theory improves by considering normalized distributions.

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \text{ GeV}$

NNLO QCD predictions at large q_T

Normalized Z q_T spectrum ($q_T > 20 \text{ GeV}$).

\rightarrow see A. Huss talk

- ATLAS data ($\sqrt{s} = 8 \text{ TeV}$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_{\rm S}^3)$) QCD predictions [G.-DeRidder, Gehrmann, Glover, Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).
- Agreement between data and theory improves by considering normalized distributions.

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \text{ GeV}$

NNLO QCD predictions at large q_T

Normalized Z q_T spectrum ($q_T > 20$ GeV).

$\rightarrow \text{see A. Huss talk}$

- ATLAS data ($\sqrt{s} = 8 \text{ TeV}$) [1512.02192] (2.8% luminosity uncertainty not shown).
- NNLO (i.e. $\mathcal{O}(\alpha_5^3)$) QCD predictions [G.-De Ridder, Gehrmann, Glover, Huss, Morgan('16)]. NNLO correction positive (~6-8%) and reduce scale dependence (factor 2 around $\mu = \sqrt{M^2 + q_T^2}$).
- Agreement between data and theory improves by considering normalized distributions.

In the small q_T region effects of soft-gluon resummation are essential At the LHC 90% of the W^{\pm} and Z^0 are produced with $q_T \lesssim 20 \text{ GeV}$

$$rac{d\hat{\sigma}}{d^2\mathbf{q_T}\,dM^2\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(res)}
ight] + \left[d\hat{\sigma}^{(fin)}
ight];$$

$$\int dq_T^2 \frac{d\hat{\sigma}^{(res)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} \sum \alpha_S^n \log^m \frac{M^2}{Q_T^2} \\ \int dq_T^2 \frac{d\hat{\sigma}^{(fn)}}{dq_T^2} \stackrel{q_T \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2\mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}\tau} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{\mathsf{T}}\,dM^{2}\,d\hat{y}\,d\Omega} = \left[d\hat{\sigma}^{(\mathsf{res})}\right] + \left[d\hat{\sigma}^{(\mathsf{fin})}\right]; \qquad \qquad \int dq_{\mathsf{T}}^{2}\frac{d\hat{\sigma}^{(\mathsf{res})}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}}\to 0}{\sim} \sum \alpha_{\mathsf{S}}^{n}\log^{m}\frac{M^{2}}{Q_{\mathsf{T}}^{2}} \\ \int dq_{\mathsf{T}}^{2}\frac{d\hat{\sigma}^{(\mathsf{fin})}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}}\to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(\text{res})}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}\mathbf{T}} \mathcal{W}(\mathbf{b}, \mathbf{M}, \hat{\mathbf{y}}, \hat{\mathbf{s}}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

LL $(\sim \alpha_S^n \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_S^n \widetilde{L}^n)$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_S^n \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\widetilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

$$\mathcal{G}(\alpha_{\mathcal{S}},\widetilde{L}) = \widetilde{L} g^{(1)}(\alpha_{\mathcal{S}}\widetilde{L}) + g^{(2)}(\alpha_{\mathcal{S}}\widetilde{L}) + \frac{\alpha_{\mathcal{S}}}{\pi} g^{(3)}(\alpha_{\mathcal{S}}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = 1 + \frac{\alpha_{\mathcal{S}}}{\pi} \mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^2 \mathcal{H}^{(2)} + \cdots$$

LL $(\sim \alpha_{S}^{n} \widetilde{L}^{n+1})$: $g^{(1)}$, $(\hat{\sigma}^{(0)})$; NLL $(\sim \alpha_{S}^{n} \widetilde{L}^{n})$: $g^{(2)}$, $\mathcal{H}^{(1)}$; NNLL $(\sim \alpha_{S}^{n} \widetilde{L}^{n-1})$: $g^{(3)}$, $\mathcal{H}^{(2)}$;

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the double Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

$$\mathcal{G}(\alpha_{\mathsf{S}},\widetilde{\mathsf{L}}) = \widetilde{\mathsf{L}} g^{(1)}(\alpha_{\mathsf{S}}\widetilde{\mathsf{L}}) + g^{(2)}(\alpha_{\mathsf{S}}\widetilde{\mathsf{L}}) + \frac{\alpha_{\mathsf{S}}}{\pi} g^{(3)}(\alpha_{\mathsf{S}}\widetilde{\mathsf{L}}) + \cdots \qquad \mathcal{H}(\alpha_{\mathsf{S}}) = 1 + \frac{\alpha_{\mathsf{S}}}{\pi} \mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^2 \mathcal{H}^{(2)} + \cdots$$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^{n+1}): \; g^{(1)}, \; (\widehat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{L}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{L}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^n): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{LL} \; (\sim \alpha_S^n \widetilde{L}^n): \; \mathsf{LL} \; (\simeq \alpha_S^n \widetilde{L}^n): \; \mathsf{LL} \; (\simeq \alpha_S^n \widetilde{$

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{T} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{T}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} \sum \alpha_{S}^{n} \log^{m} \frac{M^{2}}{Q_{T}^{2}} \int dq_{T}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{T}^{2}} \stackrel{q_{T} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_{\mathcal{S}}) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_{\mathcal{S}},\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n+1}): \; g^{(1)}, \; (\widehat{\sigma}^{(0)}); \; \; \mathsf{NLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^n): \; g^{(2)}, \; \mathcal{H}^{(1)}; \; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; g^{(3)}, \; \mathcal{H}^{(2)}; \; \mathsf{NNLL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; \mathsf{NNL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}^{n-1}): \; \mathsf{NNL} \; (\sim \alpha_S^n \widetilde{\mathcal{L}}^{n-1}): \; \mathsf{NNL} \; ($

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{\mathsf{T}} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{\mathsf{T}}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}} \to 0}{\sim} \sum \alpha_{\mathsf{S}}^{n} \log^{m} \frac{M^{2}}{Q_{\mathsf{T}}^{2}} \int dq_{\mathsf{T}}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(b, M, \hat{y}, \hat{s}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\tilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

 $\mathcal{G}(\alpha_{S},\widetilde{L}) = \widetilde{L}g^{(1)}(\alpha_{S}\widetilde{L}) + g^{(2)}(\alpha_{S}\widetilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\widetilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$

 $\mathsf{LL} \ (\sim \alpha_S^n \widetilde{L}^{n+1}): \ g^{(1)}, \ (\widehat{\sigma}^{(0)}); \ \ \mathsf{NLL} \ (\sim \alpha_S^n \widetilde{L}^n): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \ \mathsf{NNLL} \ (\sim \alpha_S^n \widetilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$

$$\frac{d\hat{\sigma}}{d^{2}\mathbf{q}_{\mathsf{T}} dM^{2} d\hat{y} d\Omega} = \left[d\hat{\sigma}^{(res)}\right] + \left[d\hat{\sigma}^{(fin)}\right]; \qquad \int dq_{\mathsf{T}}^{2} \frac{d\hat{\sigma}^{(res)}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}} \to 0}{\sim} \sum \alpha_{\mathsf{S}}^{n} \log^{m} \frac{M^{2}}{Q_{\mathsf{T}}^{2}} \int dq_{\mathsf{T}}^{2} \frac{d\hat{\sigma}^{(fin)}}{dq_{\mathsf{T}}^{2}} \stackrel{q_{\mathsf{T}} \to 0}{\sim} 0$$

Resummation holds in impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\left[d\hat{\sigma}^{(res)}\right] = \frac{d\hat{\sigma}^{(0)}}{d\Omega} \frac{1}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi^2} e^{i\mathbf{b}\cdot\mathbf{q}\mathbf{\tau}} \mathcal{W}(\mathbf{b}, \mathbf{M}, \hat{\mathbf{y}}, \hat{\mathbf{s}}),$$

In the *double* Mellin space $(z_{1,2} = e^{\pm \hat{y}} M / \sqrt{\hat{s}})$ we have:

$$\mathcal{W}_{(N_1,N_2)}(b,M) = \mathcal{H}_{(N_1,N_2)}(\alpha_S) \times \exp\left\{\mathcal{G}_{(N_1,N_2)}(\alpha_S,\widetilde{L})\right\}$$

with $\widetilde{L} \equiv \log(Q^2 b^2 + 1)$ ($Q \sim M$ is the resummation scale)

$$\mathcal{G}(\alpha_{S},\tilde{L}) = \tilde{L}g^{(1)}(\alpha_{S}\tilde{L}) + g^{(2)}(\alpha_{S}\tilde{L}) + \frac{\alpha_{S}}{\pi}g^{(3)}(\alpha_{S}\tilde{L}) + \cdots \qquad \mathcal{H}(\alpha_{S}) = 1 + \frac{\alpha_{S}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots$$
$$\mathsf{LL} \ (\sim \alpha_{S}^{n}\tilde{L}^{n+1}): \ g^{(1)}, \ (\hat{\sigma}^{(0)}); \ \mathsf{NLL} \ (\sim \alpha_{S}^{n}\tilde{L}^{n}): \ g^{(2)}, \ \mathcal{H}^{(1)}; \ \mathsf{NNLL} \ (\sim \alpha_{S}^{n}\tilde{L}^{n-1}): \ g^{(3)}, \ \mathcal{H}^{(2)};$$

Resummed (N)NLL/(N)NLO result at small q_T matched with fixed (N)LO (i.e. $\alpha_S(\alpha_5^2)$) "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

Giancarlo Ferrera – Milan University & INFN gT resummation at NNLO+NNLL QCD with DYRes

q_T spectrum of the Z boson

NLL+NLO and NNLL+NNLO Z q_T spectrum at the LHC at $\sqrt{s} = 7/8$ TeV.

q_T spectrum of Z boson: theory vs ATLAS data

Left: NLL+NLO and NNLL+NNLO bands for $Z/\gamma^* q_T$ spectrum compared with and ATLAS data (7 TeV).

Right Top: Ratios between ResBos predictions and ATLAS data.

Right Bottom: Ratios between various MC generators results and ATLAS data.

Giancarlo Ferrera – Milan University & INFN gT resummation at NNLO+NNLL QCD with DYRes

ϕ^* spectrum of Z boson: theory vs ATLAS data

NLL+NLO and NNLL+NNLO bands for $Z/\gamma^* \phi^*$ spectrum compared with ATLAS data.

MC generators results and ATLAS data ratio to ResBos.

q_T spectrum of W: theory vs ATLAS data

NLL+NLO and NNLL+NNLO bands for W^{\pm} q_{T} spectrum compared with ATLAS data.

MC generators results and ATLAS data ratio to ResBos.

Lepton p_T distributions from W decay

Ratios of the lepton p_T normalised distribution obtained using Powheg+Pythia 8 AZNLO, DYRES and Powheg MiNLO+Pythia 8 to the distribution obtained using PYTHIA 8 AZ.

Giancarlo Ferrera – Milan University & INFN gT resummation at NNLO+NNLL QCD with DYRes

Transverse-mass distributions from W decay

Ratios of the m_T normalised distribution obtained using Powheg+Pythia 8 AZNLO, DYRES and Powheg MiNLO+Pythia 8 to the distribution obtained using PYTHIA 8 AZ.

PDF uncertainties and **NP** effects

NNLL+NNLO result for $Z q_T$ spectrum at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \ S_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T.
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

PDF uncertainties and **NP** effects

NNLL+NNLO result for $Z q_T$ spectrum at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \; \underline{S}_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T.
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

PDF uncertainties and **NP** effects

NNLL+NNLO result for $Z q_T$ spectrum at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects normalized to central NNLL+NNLO prediction.

- PDF uncertainty is smaller than the scale uncertainty and it is approximately independent on q_T (around the 3% level).
- Non perturbative *intrinsic* k_T effects parametrized by a NP form factor $S_{NP} = \exp\{-g_{NP}b^2\}$ with $0 < g_{NP} < 1.2 \ GeV^2$:

 $\exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{S},\widetilde{L})\} \ S_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T.
- NNLL+NNLO result with NP effects very close to perturbative result except for q_T < 3GeV (i.e. below the peak).

Ratio of NNLL+NNLO and NLL+NLO results for $W/Z q_T$ spectra at the LHC. Perturbative scale dependence.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated (μ^W/M_W = μ^Z/M_Z) scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for q_T > 3 GeV).
- PDF uncertainty dominates at very small ($q_T q_T \lesssim 5 \ GeV$).
- Non trivial interplay of perturbative and NP effects.

Ratio of NNLL+NNLO and NLL+NLO results for $W/Z q_T$ spectra at the LHC. Perturbative scale dependence.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated $(\mu^W/M_W = \mu^Z/M_Z)$ scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for $q_T > 3 \text{ GeV}$).
- PDF uncertainty dominates at very small $(q_T q_T \lesssim 5 \text{ GeV})$.
- Non trivial interplay of perturbative and NP effects.

Ratio of NNLL+NNLO results for $W/Z q_T$ spectra at the LHC. PDF uncertainties and impact of NP effects.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated $(\mu^W/M_W = \mu^Z/M_Z)$ scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for $q_T > 3 \text{ GeV}$).
- PDF uncertainty dominates at very small (q_T $q_T \lesssim 5 \ GeV$).
- Non trivial interplay of perturbative and NP effects.

Ratio of NNLL+NNLO results for $W/Z q_T$ spectra at the LHC. Perturbative scale dependence, PDF uncertainties and impact of NP effects.

- Ratio of W/Z observables substantially reduces both the experimental and theoretical systematic uncertainties [Giele,Keller('97)].
- Correlated $(\mu^W/M_W = \mu^Z/M_Z)$ scale variations by factor 2 (avoiding ratios larger than 2) gives reasonable estimate of pert. uncertainty (nice overlap of scale variation bands for $q_T > 3 \text{ GeV}$).
- PDF uncertainty dominates at very small $(q_T q_T \lesssim 5 \text{ GeV})$.
- Non trivial interplay of perturbative and NP effects.

W/Z ratio q_T spectrum: perturbative scale uncertainty

DYqT resummed predictions for the ratio of W/Z normalized q_T spectra. Uncorrelated perturbative scale variation band.

DYqT resummed predictions for the ratio of W/Z normalized q_T spectra. Correlated perturbative scale variation band.