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Introduction

GENEVA combines the 3 theoretical tools we use for QCD predictions
into a single framework:

1) Fully differential fixed-order calculations
I up to NNLO via N-jettiness subtraction

2) Higher-logarithmic resummation
I up to NNLL′ via SCET (but not limited to it)

3) Parton showering, hadronization and MPI
I recycling standard SMC (currently using PYTHIA8)

Resulting Monte Carlo event generator has many advantages:

I consistently improves perturbative accuracy away from FO regions
I provides event-by-event systematic estimate of theoretical perturbative

uncertainties and correlations
I gives a direct interface to SMC hadronization, MPI modeling and
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GENEVA in a nutshell: Drell-Yan production

1. Design IR-finite definition of
events, based on resolution
parameters T cut

0 .

2. Associate differential
cross-sections to events such
that 0-jet events are (N)NLO
accurate and T0 is resummed at
NNLL’ accuracy

3. Shower events imposing
conditions to avoid spoiling NNLL’
accuracy reached at step 2

4. Hadronize, add multi-parton
interactions (MPI) and decay
without further restrictions
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Combining resummation with fixed-order in GENEVA

For Drell-Yan at NNLO provide partonic formulae for up to 2 extra partons.
I 0−jet exclusive cross section

dσMC
0

dΦ0
(T cut

0 ) =
dσNNLL′

0

dΦ0
(T cut

0 ) +
dσnons

0

dΦ0
(T cut

0 )

dσNNLL′

dΦ0
(T cut

0 ) =

∫ T cut
0

0
dT0

∑
ij

dσBij

dΦ0
Hij(Q

2, µH)UH(µH , µ)

×
[
Bi(xa, µB)⊗ UB(µB , µ)

]
×
[
Bj(xb, µB)⊗ UB(µB , µ)

]
⊗
[
S(µS)⊗ US(µS , µ)

]
,

SCET factorization: hard, beam and soft function depend on a single scale. No
large logarithms present when scales are at their characteristic values:

µH = Q, µB =
√
QT0, µS = T0

Resummation performed via RGE evolution factors U to a common scale µ.
At NNLL’ all singular contributions to O

(
α2

s

)
already included by definition.

Two-loop virtual corrections properly spread to nonzero T0 by resummation.
Nonsingular matching constrained by requirement of NNLO0 accuracy.
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Combining resummation with fixed-order in GENEVA

For Drell-Yan at NNLO provide partonic formulae for up to 2 extra partons.
I 1−jet inclusive cross section

dσMC
≥1

dΦ1
(T0 > T cut

0 ) =
dσNNLL′
≥1

dΦ1
θ(T0 > T cut

0 ) +
dσnons
≥1

dΦ1
(T0 > T cut

0 )

dσMC
≥1

dΦ1
(T0 > T cut

0 ) =
dσNNLL′
≥1

dΦ1
θ(T0 > T cut

0 ) +
dσnons
≥1

dΦ1
(T0 > T cut

0 )

dσNNLL′
≥1

dΦ1
θ(T0 > T cut

0 ) =
dσNNLL′

dΦ0dT0
P(Φ1) θ(T0 > T cut

0 )

Resummed formula only differential in Φ0, T0. Need to make it differential in 2
more variables, e.g. energy ratio z = EM/ES and azimuthal angle φ
We use a normalized splitting probability to make the resummation differential
in Φ1.
All singular O

(
α2

s

)
terms again included at NNLL’ by definition.

Nonsingular matching fixed by NLO1 requirement
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Combining resummation with fixed-order in GENEVA

For Drell-Yan at NNLO provide partonic formulae for up to 2 extra partons.
I The separation between 1 and 2 jets is determined by the NLL resummation of T cut

1

Results in lengthier expressions. Need to include both the T0 and T1
resummations. See arXiv: 1508.01475 and arXiv: 1605.07192 for derivation.

dσMC
1

dΦ1
(T0 > T cut

0 ; T cut
1 ) =

dσC≥1

dΦ1
U1(Φ1, T cut

1 ) θ(T0 > T cut
0 ) +

dσmatch
1

dΦ1
(T0 > T cut

0 ; T cut
1 )
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≥2

dΦ2
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0 , T1 > T cut
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0 )
∣∣∣
Φ1=ΦT1 (Φ2)

×

P(Φ2) θ(T1 > T cut
1 ) +

dσmatch
≥2

dΦ2
(T0 > T cut

0 , T1 > T cut
1 )

dσC≥1

dΦ1
=

dσNNLL′
≥1

dΦ1
+ (B1 + V C1 )(Φ1)−

[dσNNLL′
≥1

dΦ1

]
NLO1

The fully differential T0 information is contained trough
dσNNLL′
≥1

dΦ1
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Scale profiles and theoretical uncertainties
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I Theoretical uncertainties in resum. are
evaluated by independently varying
each µ.

I Range of variations is tuned to turn off
the resummation before the
nonsingular dominates and to respect
SCET scaling µH & µB & µS

I FO unc. are usual {2µH , µH/2}
variations.

I Final results added in quadrature.

µH = µFO =M`+`− ,

µS(T0) = µFOfrun(T0/Q) ,

µB(T0) = µFO

√
frun(T0/Q)

I frun(x) common profile function: strict
canonical scaling x→ 0 and switches
off resummation x ∼ 1
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Adding the parton shower.

I Purpose of the parton shower is to fill the 0− and 1−jet exclusive bins with radiation
and add more emissions to the inclusive 2−jet bin

I Not allowed to change accuracy reached at partonic level.
I If shower ordered in N-jettiness setting starting scales is enough.
I For different ordering variable (i.e. any real shower), jet-boundaries constraints T cut

k
need to be imposed on hardest radiation (largest jet resolution scale)

I Impose the first emission has the largest jet resolution scale, by performing a
splitting by hand using a NLL Sudakov and the Tk-preserving map.

Showering setting starting scales T cut
k does not spoil NNLL’+NNLO accuracy:

• Φ0 events only constrained by normalization, shape given by PYTHIA

• Φ1 events vanish forced to vanish by splitting down to Λ1 . 100 MeV.
• Φ2 events: PYTHIA showering can be shown to shift T0 distribution at the same
α3

s /T0 order of the dominant term beyond NNLL’. Beyond claimed accuracy.
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Adding hadronization and MPI

I Hadronization is left totally unconstrained by the GENEVA-PYTHIA interface
I After showering level only small changes within pert. uncertainties.

I After hadronization O(1) shift in peak, tail unchanged: as predicted by factorization.

I Addition of MPI complicated by PYTHIA8 interleaved evolution. Shower constraints
only applied to particle arising from primary hard interaction. Secondary interactions
unconstrained.
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Predictions for other observables : qT , φ∗ and jet-veto

I Comparison with DYqT Bozzi et al. arXiv:1007.2351 , BDMT Banfi et al. arXiv:1205.4760 and JetVHeto
Banfi et al. 1308.4634

I Analytic NNLL predictions formally higher log accuracy than GENEVA
I PYTHIA8 provides non-perturbative hadronization corrections

I Very low end highly sensitive to non-pertub. effects, kT smearing.
I Smaller unc. in GENEVA there not necessarily an indication of higher precision.
I No sistematic tuning attempt, nor inclusion of shower uncertainties yet.
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Results for ZpT
I Perturbative uncertainty via different

weights
I Shower uncertainty via different shower

parameters
I Hadronization/MPI unc. via different

tunes
I non-trivial interplay for observables

which are not the resolution parameter

Thank you for your attention!
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