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small p, resummation in momentum space

» logarithmic accuracy usually defined at the level of the logarithm of the cumulative cross
section &

P d
S(pr) = /0 dp%ﬁ ~exp{alL" T 4 alL" + o L™ oL 4 L)
T

for LL, NLL, NNLL, N3LL, where L = log(M/pr)
» as pr absorbs the recoil of all emissions k;;, when pr — 0, two mechanism compete:

- Sudakov (exponential) suppression when ky; ~ pr

- azimuthal cancellations when ky; > pr

» the latter mechanism is dominant when pr — 0: S(pr) ~ p2 [Parisi,Petronzio '79]
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small p, resummation in momentum space

» logarithmic accuracy usually defined at the level of the logarithm of the cumulative cross
section &

T d
S(pr) = /O A~ exp{od I ol L 4 aZ L'+ a2l )
T

for LL, NLL, NNLL, N3LL, where L = log(M/pr)
» as pr absorbs the recoil of all emissions k;;, when pr — 0, two mechanism compete:

- Sudakov (exponential) suppression when ky; ~ pr

- azimuthal cancellations when k¢; > pr

» the latter mechanism is dominant when pr — 0: S(pr) ~ p2 [Parisi,Petronzio '79]

» just an hierarchy in log(M /pr) doesn’t work, as neglected effects actually dominate the
limit. It's impossible to recover power behaviour at any given order in L.
» Moreover, at any log order in L = log(M/pr), resummation in direct space cannot be, at
the same time, free of subleading terms and of spurious singularities at finite
pr [Frixione,Nason,Ridolfi '98]
» when going in b-space, the vectorial nature of azimuthal cancellations is taken care by a
Fourier transform
@ z z P g5 T B E
I — = 7 o—ibpt —tib-ky;
3 (pr — (kt1 + .o + kin)) = 2 ’ge t

— The information of the radiation is, by construction, lost.
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small p. ; resummation in momentum space (l)

Our approach:
» Write all-order cross-section for v = pr (V({p}, k1 ... kn) = |ke1 + ... + kin)

£(v) :/dq’BV(%) Z/H[dkmM@m,kvl,...,kn>|ge(v—V<{ﬁ},k1-..kn>>
n=0 i=1

V : all-order form factor |M(p1,p2, k1, - .-, kn)|? : real emissions

» re-organize multiple-emission squared amplitudes into “n-particle-correlated blocks”.

- the rIRC safety of the observable guarantees a hierarchy between the different blocks
(n-particle — one higher log-order than n — 1-particle)
- for inclusive observables, can integrate the blocks before evaluating the observable.

[M(p1, 52, k1, ., kn)|> — |Mp (1, p2)|?

15 . L
X {H (\M(ki)\z + /[dkaudkaM(ka,kb)|26<2><km + Fup = kri)d(Yap = Y5)
: =1

+ /[dka][dkb][dkC“M(kav ke, kc)‘26(2) (Efa + Etb + Etc - Eti)6(yabc - Y;.) +. ) }

- each | M| has a perturbative expansion

> LL: | MO (k)2 ;NLL:/|]\7[(°>(ka,kb)|2,|M(1)(ki)\2;...



cancellation of singularities

» need subtraction of IRC poles between V and /H[dki”]\f(ﬁl,ﬁQ, iy kn)?
=1

» introduce a resolution scale ek:1 (not ¢ pr 1)
- emissions with k;; < ekt are unresolved. They don'’t contribute to the observable, and
upon integration they regularise virtual corrections leaving a Sudakov factor

e~ R(eki1) _ o—R(ki1)—log(1/e)R (ke1)+...
- emissions above ck;1 are resolved, hence are treated exclusively

(they are used to compute the observable!). This is done through a MC.
- ¢ dependence in the resolved emissions against the one in the Sudakov!

» Resolved k¢; are not necessarily ~ pr: all kinematics properly covered, without
assumptions on the hierarcy between k.; and pr.

» k. > pr included. This also removes the spurious singularities at finite pr and
gives the correct power behaviour at pr — 0



small p. ; resummation in momentum space (ll)

the role of subleading terms
» logarithmic counting is defined in terms of log(mu /k¢;).

» in the Sudakov limit, the hierarchy in log(mu /pr, i) makes sense, one has ki; ~ pru ~ 0.

- same as resummation of log(mu /pr u), i.e. log accuracy in log(mu/k¢;) translates
into the same accuracy in log(mu/pr, 1), plus subleading terms.

» similar conclusions were found by Ebert and Tackmann, ’16.

some advantages with respect to b-space
» closer connections to a parton-shower formalism

» if observables have the same LL as pr, then we can keep using the same resolution scale
ek¢1, and compute all of them at the same time.

» might allow joint resummation (the k.; are not integrated over).



comparison with b-space and implementation

ds(v) le/ ANz Ny N dMpl2 ., - cp,e
= ——arca T sL2 (o)f
o = . i oy a2 g R R (BB R (N (o)

acpse c1; c M dky 27 d
£5%, ) =[O (@ () H(um) O, (s (wo))] [ ”/0 o

0 ki1 27
2
—R(ekyq) B KO dkt as(k:t)r ko) o dk:t (C) (k
N s (k
> (R, (o) + Mrwl (ki) + T <as<ku>>)
=1
P nﬁlfl [ S (e, ke + Ty, o) + T (i) )
=on! s 2772_1 £y ATt = N, (Xs (Pt Ny, (st
X © (v—V{p}, k1, kny1))

G = ki /ker T and () anomalous dimensions of PDFs and coeff. function
. from above expression, proven equivalence with b-space formula, and extracted necessary
term to add to A4, Bs and H® (or ¢(?)
. as the transverse momenta of the resolved reals are of the same order, we can expand the
integrand of the resolved radiation about k;; up to the desired accuracy
. acode (named RadIsH), performing all of the above, also for Drell-Yan, will be released
soon.




...we are finishing the DY case; for now, | show just a result for Higgs production...
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prn at N3LL+NNLO
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+ resummation: relevant below 30 GeV

+ medium-high pr: matching to differential NNLO matters (as expected): + 10 % wrt NLO,
reduced uncertainty bands.
- N3LL+NNLO corrections: few percent at peak, more sizeable below

- after matching at NNLO, only moderate reduction in uncertainty from NNLL to N3LL.
Precise quantitative statement needs very stable NNLO distributions below peak.
- phenomenology: with this precision, perturbative uncertainty from resummation seems to

saturate; including quark mass effects will be relevant to improve further.
[Melnikov,Penin '16; Melnikov et al. '16; Lindert et al. '17]



Multiplicative vs Additive Matching

pT do = Pres if pr < Mp
S P _ dpl.—29 .
(pr, ®B) /0 Prr dp-d® 5 { — Yro. ifpr2 Mp

additive matching multiplicative matching

2:1("11'1dadtched (pT) =

Z:res(pT) + z:FO(pT) - X:res,exp(pT)

vult
Sinatehed (P1) =
Yr.0.(pr)
v .0.
e (pT) z:res,exp (pT)
» there’s no rigorous theory argument to favour a prescription over the other

- additive: probably the more natural choice, - multiplicative: numerically more stable, as
simpler and clear

physical suppression at small pr fixes
- numerically delicate when pr — 0 potentially unstable F.O. results
(F.O. result needs to be extremely stable) - allows to include constant terms from F.O.



Multiplicative vs Additive Matching

» for pr u at N3LL, used mult. matching: constant terms at O(a3) recovered without the need
of knowing analytically coefficient and hard functions.

NNLO
_ _N3LO ’ pp—Hj
YFro. = Opp—H — dPTT
pT Pt

» in additive matching, one would instead need C®) and H(®) in effective luminosity Lys1,,

» to estimate higher-order logarithmic corrections, introduce resummation scale Q:

L=In M =1In Q —lng

kT,l kT,l M
and then vary @, making sure that the first term is larger than the second, as we are in fact
expanding about In(Q/kr,1).

» in resummation formula, use replacement above in Sudakov and parton densities. Expand
about In Q/kr 1 and reabsorb In Q/M in H and C functions, entering the generalized
luminosities

~ 1
HO (up) = AD (up,2q) = HO (up) + (—5A<1> Ina? + B“)) e, wq=Q/M.

2 272
1 ~(1 1 .0 x5, M
C,Ej)(z) — Ci(j)(z,up,xQ) = Ci(j)(z) + PL.(J. )(z) In 7?&?



Outlook

» we are now studying different matching scheme for DY (pr.z and ¢*).
» pp — Zj at NNLO from NNLOJET, Gehrmann-De Ridder et al., "16

» we are comparing different schemes, with their uncertainty band, and against
data as well.
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