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small pT resummation in momentum space
I logarithmic accuracy usually defined at the level of the logarithm of the cumulative cross

section Σ

Σ(pT) =

∫ pT

0
dp′T

dσ

dp′T
∼ exp{αnSLn+1 + αnSL

n + αnSL
n−1 + αnSL

n−2 + ...}

for LL, NLL, NNLL, N3LL, where L = log(M/pT)

I as pT absorbs the recoil of all emissions kti, when pT → 0, two mechanism compete:

- Sudakov (exponential) suppression when kti ∼ pT
- azimuthal cancellations when kti � pT

I the latter mechanism is dominant when pT → 0: Σ(pT) ∼ p2
T [Parisi,Petronzio ’79]

I just an hierarchy in log(M/pT) doesn’t work, as neglected effects actually dominate the
limit. It’s impossible to recover power behaviour at any given order in L.

I Moreover, at any log order in L = log(M/pT), resummation in direct space cannot be, at
the same time, free of subleading terms and of spurious singularities at finite
pT [Frixione,Nason,Ridolfi ’98]

I when going in b-space, the vectorial nature of azimuthal cancellations is taken care by a
Fourier transform

δ(2)( ~pT − (~kt1 + ...+ ~ktn)) =

∫
d2~b

4π2
e−i

~b·~pt
n∏
i=1

e−i
~b·~kti

→ The information of the radiation is, by construction, lost.
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small pT,H resummation in momentum space (I)
Our approach:

I Write all-order cross-section for v = pT (V ({p̃}, k1 . . . kn) = |~kt1 + ...+ ~ktn|)

Σ(v) =

∫
dΦBV(ΦB)

∞∑
n=0

∫ n∏
i=1

[dki]|M(p̃1, p̃2, k1, . . . , kn)|2 Θ (v − V ({p̃}, k1 . . . kn))

V : all-order form factor |M(p̃1, p̃2, k1, . . . , kn)|2 : real emissions

I re-organize multiple-emission squared amplitudes into “n-particle-correlated blocks”.

- the rIRC safety of the observable guarantees a hierarchy between the different blocks
(n-particle→ one higher log-order than n− 1-particle)

- for inclusive observables, can integrate the blocks before evaluating the observable.

|M(p̃1, p̃2, k1, . . . , kn)|2 −→ |MB(p̃1, p̃2)|2

×
1

n!

{
n∏
i=1

(
|M(ki)|2 +

∫
[dka][dkb]|M̃(ka, kb)|2δ(2)(~kta + ~ktb − ~kti)δ(Yab − Yi)

+

∫
[dka][dkb][dkc]|M̃(ka, kb, kc)|2δ(2)(~kta + ~ktb + ~ktc − ~kti)δ(Yabc − Yi) + . . .

) }
- each |M̃ | has a perturbative expansion

I LL : |M(0)(ki)|2 ; NLL :
∫
|M̃(0)(ka, kb)|2 , |M(1)(ki)|2 ; ...
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cancellation of singularities

I need subtraction of IRC poles between V and
∫ n∏

i=1

[dki]|M(p̃1, p̃2, k1, . . . , kn)|2

I introduce a resolution scale εkt1 (not ε pT,H)
- emissions with kti < εkt1 are unresolved. They don’t contribute to the observable, and

upon integration they regularise virtual corrections leaving a Sudakov factor

e−R(εkt1) = e−R(kt1)−log(1/ε)R′(kt1)+...

- emissions above εkt1 are resolved, hence are treated exclusively
(they are used to compute the observable!). This is done through a MC.

- ε dependence in the resolved emissions cancel against the one in the Sudakov!

I Resolved kti are not necessarily ∼ pT: all kinematics properly covered, without
assumptions on the hierarcy between kti and pT.

I kti � pT included. This also removes the spurious singularities at finite pT and
gives the correct power behaviour at pT → 0
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small pT,H resummation in momentum space (II)

the role of subleading terms
I logarithmic counting is defined in terms of log(mH/kti).

I in the Sudakov limit, the hierarchy in log(mH/pT,H) makes sense, one has kti ∼ pT,H ∼ 0.

- same as resummation of log(mH/pT,H), i.e. log accuracy in log(mH/kti) translates
into the same accuracy in log(mH/pT,H), plus subleading terms.

I similar conclusions were found by Ebert and Tackmann, ’16.

some advantages with respect to b-space
I closer connections to a parton-shower formalism

I if observables have the same LL as pT, then we can keep using the same resolution scale
εkt1, and compute all of them at the same time.

I might allow joint resummation (the kti are not integrated over).
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comparison with b-space and implementation

dΣ(v)

dΦB
=

∫
C1

dN1

2πi

∫
C2

dN2

2πi
x
−N1
1 x

−N2
2

∑
c1,c2

d|MB |2c1c2
dΦB

f
T
N1

(µ0)Σ̂
c1,c2
N1,N2

(v)fN2
(µ0)

Σ̂
c1,c2
N1,N2

(v) =
[
C
c1;T
N1

(αs(µ0))H(µR)C
c2
N2

(αs(µ0))
] ∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π

× e−R(εkt1)
exp

−
2∑
`=1

(∫ µ0
εkt1

dkt

kt

αs(kt)

π
ΓN`

(αs(kt)) +

∫ µ0
εkt1

dkt

kt
Γ
(C)
N`

(αs(kt))

)
2∑

`1=1

(
R
′
`1

(kt1) +
αs(kt1)

π
ΓN`1

(αs(kt1)) + Γ
(C)
N`1

(αs(kt1))

)

×
∞∑
n=0

1

n!

n+1∏
i=2

∫ 1

ε

dζi

ζi

∫ 2π

0

dφi

2π

2∑
`i=1

(
R
′
`i

(kti) +
αs(kti)

π
ΓN`i

(αs(kti)) + Γ
(C)
N`i

(αs(kti))

)
× Θ

(
v − V ({p̃}, k1, . . . , kn+1)

)

ζi = kti/kt1 Γ and Γ(C) anomalous dimensions of PDFs and coeff. function
. from above expression, proven equivalence with b-space formula, and extracted necessary

term to add to A4, B3 and H(2) (or C(2))
. as the transverse momenta of the resolved reals are of the same order, we can expand the

integrand of the resolved radiation about kt1 up to the desired accuracy
. a code (named RadISH), performing all of the above, also for Drell-Yan, will be released

soon.
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...we are finishing the DY case; for now, I show just a result for Higgs production...

6 / 10



pT,H at N3LL+NNLO

RadISH, 13 TeV, mH = 125 GeV

µR = µF = mH, Q = mH/2

PDF4LHC15 (NNLO)

uncertainties with µR, µF, Q variations (x 3/2)

Fixed order from PRL 115 (2015) 082003

1
/σ

 d
σ
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 p
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 [
1
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e
V

]

pt
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. NNLO matching (σN3LO
pp→H , dσNNLO

pp→Hj/dpT)

. N3LO from Anastasiou et al., ’15

. pp→ Hj at NNLO from Boughezal, Caola,
et al., ’15

. anomalous dimension from Li, Zhu ’16,
Vladimirov ’16

+ resummation: relevant below 30 GeV

+ medium-high pT: matching to differential NNLO matters (as expected): + 10 % wrt NLO,
reduced uncertainty bands.

- N3LL+NNLO corrections: few percent at peak, more sizeable below

- after matching at NNLO, only moderate reduction in uncertainty from NNLL to N3LL.
Precise quantitative statement needs very stable NNLO distributions below peak.

- phenomenology: with this precision, perturbative uncertainty from resummation seems to
saturate; including quark mass effects will be relevant to improve further.

[Melnikov,Penin ’16; Melnikov et al. ’16; Lindert et al. ’17]
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Multiplicative vs Additive Matching

Σ(pT,ΦB) =

∫ pT

0

dp′T
dσ

dp′TdΦB

{
→ Σres if pT �MB

→ ΣF.O. if pT &MB

additive matching

Σaddmatched(pT) =

Σres(pT) + ΣF.O.(pT)− Σres,exp(pT)

multiplicative matching

Σmultmatched(pT) =

Σres(pT)
ΣF.O.(pT)

Σres,exp(pT)

I there’s no rigorous theory argument to favour a prescription over the other

- additive: probably the more natural choice,
simpler and clear

- numerically delicate when pT → 0
(F.O. result needs to be extremely stable)

- multiplicative: numerically more stable, as
physical suppression at small pT fixes
potentially unstable F.O. results

- allows to include constant terms from F.O.
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Multiplicative vs Additive Matching

I for pT,H at N3LL, used mult. matching: constant terms at O(α3
S) recovered without the need

of knowing analytically coefficient and hard functions.

ΣF.O. = σN3LO
pp→H −

∫
pT

dp′T
dσNNLO
pp→Hj

dp′T

I in additive matching, one would instead need C(3) and H(3) in effective luminosity LN3LL

I to estimate higher-order logarithmic corrections, introduce resummation scale Q:

L ≡ ln
M

kT,1
= ln

Q

kT,1
− ln

Q

M

and then vary Q, making sure that the first term is larger than the second, as we are in fact
expanding about ln(Q/kT,1).

I in resummation formula, use replacement above in Sudakov and parton densities. Expand
about lnQ/kT,1 and reabsorb lnQ/M in H and C functions, entering the generalized
luminosities

H
(1)

(µR)→ H̃
(1)

(µR, xQ) = H
(1)

(µR) +

(
−

1

2
A

(1)
ln x

2
Q + B

(1)

)
ln x

2
Q, xQ = Q/M.

C
(1)
ij (z)→ C̃

(1)
ij (z, µF , xQ) = C

(1)
ij (z) + P̂

(0)
ij (z) ln

x2
QM

2

µ2
F
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Outlook

I we are now studying different matching scheme for DY (pT,Z and φ∗).

I pp→ Zj at NNLO from NNLOJET, Gehrmann-De Ridder et al., ’16

I we are comparing different schemes, with their uncertainty band, and against
data as well.
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