Resummation with RadISH

Emanuele Re

CERN \& LAPTh Annecy

ᄂAj丁下
pTZ and pTW theory meeting CERN, 25 January 2018

small p_{T} resummation in momentum space

- logarithmic accuracy usually defined at the level of the logarithm of the cumulative cross section Σ

$$
\Sigma\left(p_{\mathrm{T}}\right)=\int_{0}^{p_{\mathrm{T}}} d p_{\mathrm{T}}^{\prime} \frac{d \sigma}{d p_{\mathrm{T}}^{\prime}} \sim \exp \left\{\alpha_{\mathrm{S}}^{n} L^{n+1}+\alpha_{\mathrm{S}}^{n} L^{n}+\alpha_{\mathrm{S}}^{n} L^{n-1}+\alpha_{\mathrm{S}}^{n} L^{n-2}+\ldots\right\}
$$

for LL, NLL, NNLL, N3LL, where $L=\log \left(M / p_{\mathrm{T}}\right)$

- as p_{T} absorbs the recoil of all emissions $k_{t i}$, when $p_{\mathrm{T}} \rightarrow 0$, two mechanism compete:
- Sudakov (exponential) suppression when $k_{t i} \sim p_{\mathrm{T}}$
- azimuthal cancellations when $k_{t i} \gg p_{\mathrm{T}}$

- the latter mechanism is dominant when $p_{\mathrm{T}} \rightarrow 0: \Sigma\left(p_{\mathrm{T}}\right) \sim p_{\mathrm{T}}^{2}$

small p_{T} resummation in momentum space

- logarithmic accuracy usually defined at the level of the logarithm of the cumulative cross section Σ

$$
\Sigma\left(p_{\mathrm{T}}\right)=\int_{0}^{p_{\mathrm{T}}} d p_{\mathrm{T}}^{\prime} \frac{d \sigma}{d p_{\mathrm{T}}^{\prime}} \sim \exp \left\{\alpha_{\mathrm{S}}^{n} L^{n+1}+\alpha_{\mathrm{S}}^{n} L^{n}+\alpha_{\mathrm{S}}^{n} L^{n-1}+\alpha_{\mathrm{S}}^{n} L^{n-2}+\ldots\right\}
$$

for LL, NLL, NNLL, N3LL, where $L=\log \left(M / p_{\mathrm{T}}\right)$

- as p_{T} absorbs the recoil of all emissions $k_{t i}$, when $p_{\mathrm{T}} \rightarrow 0$, two mechanism compete:
- Sudakov (exponential) suppression when $k_{t i} \sim p_{\text {T }}$
- azimuthal cancellations when $k_{t i} \gg p_{\mathrm{T}}$
- the latter mechanism is dominant when $p_{\mathrm{T}} \rightarrow 0: \Sigma\left(p_{\mathrm{T}}\right) \sim p_{\mathrm{T}}^{2}$
[Parisi,Petronzio '79]
- just an hierarchy in $\log \left(M / p_{\mathrm{T}}\right)$ doesn't work, as neglected effects actually dominate the limit. It's impossible to recover power behaviour at any given order in L.
- Moreover, at any log order in $L=\log \left(M / p_{\mathrm{T}}\right)$, resummation in direct space cannot be, at the same time, free of subleading terms and of spurious singularities at finite $p_{\text {T }}$
[Frixione,Nason,Ridolfi ' ${ }^{\text {'8] }}$
- when going in b-space, the vectorial nature of azimuthal cancellations is taken care by a Fourier transform

$$
\delta^{(2)}\left(\overrightarrow{p_{\mathrm{T}}}-\left(\vec{k}_{t 1}+\ldots+\vec{k}_{t n}\right)\right)=\int \frac{d^{2} \vec{b}}{4 \pi^{2}} e^{-i \vec{b} \cdot \vec{p}_{t}} \prod_{i=1}^{n} e^{-i \vec{b} \cdot \vec{k}_{t i}}
$$

\rightarrow The information of the radiation is, by construction, lost.

small $p_{\mathrm{T}, \mathrm{H}}$ resummation in momentum space (I)

Our approach:

- Write all-order cross-section for $v=p_{\mathrm{T}}\left(V\left(\{\tilde{p}\}, k_{1} \ldots k_{n}\right)=\left|\vec{k}_{t 1}+\ldots+\vec{k}_{t n}\right|\right)$

$$
\begin{gathered}
\Sigma(v)=\int d \Phi_{B} \mathcal{V}\left(\Phi_{B}\right) \sum_{n=0}^{\infty} \int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \Theta\left(v-V\left(\{\tilde{p}\}, k_{1} \ldots k_{n}\right)\right) \\
\mathcal{V}: \text { all-order form factor } \quad\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}: \text { real emissions }
\end{gathered}
$$

- re-organize multiple-emission squared amplitudes into " n-particle-correlated blocks".
- the rIRC safety of the observable guarantees a hierarchy between the different blocks (n-particle \rightarrow one higher log-order than $n-1$-particle)
- for inclusive observables, can integrate the blocks before evaluating the observable.

$$
\begin{aligned}
& \left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2} \longrightarrow\left|M_{B}\left(\tilde{p}_{1}, \tilde{p}_{2}\right)\right|^{2} \\
& \times \frac{1}{n!}\left\{\prod _ { i = 1 } ^ { n } \left(\left|M\left(k_{i}\right)\right|^{2}+\int\left[d k_{a}\right]\left[d k_{b}\right]\left|\tilde{M}\left(k_{a}, k_{b}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}-\vec{k}_{t i}\right) \delta\left(Y_{a b}-Y_{i}\right)\right.\right. \\
& \left.\left.+\int\left[d k_{a}\right]\left[d k_{b}\right]\left[d k_{c}\right]\left|\tilde{M}\left(k_{a}, k_{b}, k_{c}\right)\right|^{2} \delta^{(2)}\left(\vec{k}_{t a}+\vec{k}_{t b}+\vec{k}_{t c}-\vec{k}_{t i}\right) \delta\left(Y_{a b c}-Y_{i}\right)+\ldots\right)\right\}
\end{aligned}
$$

- each $|\tilde{M}|$ has a perturbative expansion
- LL : $\left|M^{(0)}\left(k_{i}\right)\right|^{2} ; \mathrm{NLL}: \int\left|\tilde{M}^{(0)}\left(k_{a}, k_{b}\right)\right|^{2},\left|M^{(1)}\left(k_{i}\right)\right|^{2} ; \ldots$

cancellation of singularities

- need subtraction of IRC poles between \mathcal{V} and $\int \prod_{i=1}^{n}\left[d k_{i}\right]\left|M\left(\tilde{p}_{1}, \tilde{p}_{2}, k_{1}, \ldots, k_{n}\right)\right|^{2}$
- introduce a resolution scale $\epsilon k_{t 1}$ (not $\epsilon p_{T, H}$)
- emissions with $k_{t i}<\epsilon k_{t 1}$ are unresolved. They don't contribute to the observable, and upon integration they regularise virtual corrections leaving a Sudakov factor

$$
e^{-R\left(\epsilon k_{t 1}\right)}=e^{-R\left(k_{t 1}\right)-\log (1 / \epsilon) R^{\prime}\left(k_{t 1}\right)+\ldots}
$$

- emissions above $\epsilon k_{t 1}$ are resolved, hence are treated exclusively (they are used to compute the observable!). This is done through a MC.
- ϵ dependence in the resolved emissions cancel against the one in the Sudakov!
- Resolved $k_{t i}$ are not necessarily $\sim p_{\mathrm{T}}$: all kinematics properly covered, without assumptions on the hierarcy between $k_{t i}$ and p_{T}.
- $k_{t i} \gg p_{\mathrm{T}}$ included. This also removes the spurious singularities at finite p_{T} and gives the correct power behaviour at $p_{\mathrm{T}} \rightarrow 0$

small $p_{\mathrm{T}, \mathrm{H}}$ resummation in momentum space (II)

the role of subleading terms

- logarithmic counting is defined in terms of $\log \left(m_{\mathrm{H}} / k_{t i}\right)$.
- in the Sudakov limit, the hierarchy in $\log \left(m_{\mathrm{H}} / p_{\mathrm{T}, \mathrm{H}}\right)$ makes sense, one has $k_{t i} \sim p_{\mathrm{T}, \mathrm{H}} \sim 0$.
- same as resummation of $\log \left(m_{\mathrm{H}} / p_{\mathrm{T}, \mathrm{H}}\right)$, i.e. \log accuracy in $\log \left(m_{\mathrm{H}} / k_{t i}\right)$ translates into the same accuracy in $\log \left(m_{\mathrm{H}} / p_{\mathrm{T}, \mathrm{H}}\right)$, plus subleading terms.
- similar conclusions were found by Ebert and Tackmann, '16.
some advantages with respect to b-space
- closer connections to a parton-shower formalism
- if observables have the same LL as p_{T}, then we can keep using the same resolution scale $\epsilon k_{t 1}$, and compute all of them at the same time.
- might allow joint resummation (the $k_{t i}$ are not integrated over).

comparison with b-space and implementation

$$
\begin{aligned}
& \frac{d \Sigma(v)}{d \Phi_{B}}=\int_{\mathcal{C}_{1}} \frac{d N_{1}}{2 \pi i} \int_{\mathcal{C}_{2}} \frac{d N_{2}}{2 \pi i} x_{1}^{-N_{1}} x_{2}^{-N_{2}} \sum_{c_{1}, c_{2}} \frac{d\left|M_{B}\right|_{c_{1} c_{2}}^{2}}{d \Phi_{B}} \mathbf{f}_{N_{1}}^{T}\left(\mu_{0}\right) \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{2}}^{c_{1}, c_{2}}(v) \mathbf{f}_{N_{2}}\left(\mu_{0}\right) \\
& \hat{\boldsymbol{\Sigma}}_{N_{1}, N_{1}}^{c_{1}, c_{2}}(v)= {\left[\mathbf{C}_{N_{1}}^{c_{1} ; T}\left(\alpha_{s}\left(\mu_{0}\right)\right) H\left(\mu_{R}\right) \mathbf{C}_{N_{2}}^{c_{2}}\left(\alpha_{s}\left(\mu_{0}\right)\right)\right] \int_{0}^{M} \frac{d k_{t 1}}{k_{t 1}} \int_{0}^{2 \pi} \frac{d \phi_{1}}{2 \pi} } \\
& \times e^{-\mathbf{R}\left(\epsilon k_{t 1}\right)} \exp \left\{-\sum_{\ell=1}^{2}\left(\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \frac{\alpha_{s}\left(k_{t}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t}\right)\right)+\int_{\epsilon k_{t 1}}^{\mu_{0}} \frac{d k_{t}}{k_{t}} \boldsymbol{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t}\right)\right)\right)\right\} \\
& \sum_{\ell_{1}=1}^{2}\left(\mathbf{R}_{\ell_{1}}^{\prime}\left(k_{t 1}\right)+\frac{\alpha_{s}\left(k_{t 1}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t 1}\right)\right)+\boldsymbol{\Gamma}_{N_{\ell}}^{(C)}\left(\alpha_{s}\left(k_{t 1}\right)\right)\right) \\
& \times \sum_{n=0}^{\infty} \frac{1}{n!} \prod_{i=2}^{n+1} \int_{\epsilon}^{1} \frac{d \zeta_{i}}{\zeta_{i}} \int_{0}^{2 \pi} \frac{d \phi_{i}}{2 \pi} \sum_{\ell_{i}=1}^{2}\left(\mathbf{R}_{\ell_{i}}^{\prime}\left(k_{t i}\right)+\frac{\alpha_{s}\left(k_{t i}\right)}{\pi} \boldsymbol{\Gamma}_{N_{\ell}}\left(\alpha_{s}\left(k_{t i}\right)\right)+\boldsymbol{\Gamma}_{N_{i}}^{(C)}\left(\alpha_{\ell_{s}}\left(k_{t i}\right)\right)\right) \\
& \times \Theta\left(v-V\left(\{\tilde{p}\}, k_{1}, \ldots, k_{n+1}\right)\right)
\end{aligned}
$$

$$
\zeta_{i}=k_{t i} / k_{t 1} \quad \Gamma \text { and } \Gamma^{(C)} \text { anomalous dimensions of PDFs and coeff. function }
$$

from above expression, proven equivalence with b-space formula, and extracted necessary term to add to A_{4}, B_{3} and $H^{(2)}$ (or $C^{(2)}$)
as the transverse momenta of the resolved reals are of the same order, we can expand the integrand of the resolved radiation about $k_{t 1}$ up to the desired accuracy
a code (named RadISH), performing all of the above, also for Drell-Yan, will be released soon.
...we are finishing the DY case; for now, I show just a result for Higgs production...

$p_{\mathrm{T}, \mathrm{H}}$ at $\mathrm{N} 3 \mathrm{LL}+\mathrm{NNLO}$

. NNLO matching ($\sigma_{p p \rightarrow H}^{\mathrm{N} 3 \mathrm{LO}}, d \sigma_{p p \rightarrow H}^{\mathrm{NNLO}} / d p_{\mathrm{T}}$)
. N3LO from Anastasiou et al., '15
. $p p \rightarrow H j$ at NNLO from Boughezal, Caola, et al., '15
anomalous dimension from Li, Zhu '16, Vladimirov '16

+ resummation: relevant below 30 GeV
+ medium-high p_{T} : matching to differential NNLO matters (as expected): + 10% wrt NLO, reduced uncertainty bands.
- N3LL+NNLO corrections: few percent at peak, more sizeable below
- after matching at NNLO, only moderate reduction in uncertainty from NNLL to N3LL. Precise quantitative statement needs very stable NNLO distributions below peak.
- phenomenology: with this precision, perturbative uncertainty from resummation seems to saturate; including quark mass effects will be relevant to improve further.
[Melnikov,Penin '16; Melnikov et al. '16; Lindert et al. '17]

Multiplicative vs Additive Matching

$$
\Sigma\left(p_{\mathrm{T}}, \Phi_{B}\right)=\int_{0}^{p_{\mathrm{T}}} d p_{\mathrm{T}}^{\prime} \frac{d \sigma}{d p_{\mathrm{T}}^{\prime} d \Phi_{B}}
$$

$$
\begin{cases}\rightarrow \Sigma_{\mathrm{res}} & \text { if } p_{\mathrm{T}} \ll M_{B} \\ \rightarrow \Sigma_{\mathrm{F} . \mathrm{O} .} & \text { if } p_{\mathrm{T}} \gtrsim M_{B}\end{cases}
$$

additive matching
$\Sigma_{\text {matched }}^{a d d}\left(p_{\mathrm{T}}\right)=$
$\Sigma_{\text {res }}\left(p_{\mathrm{T}}\right)+\Sigma_{\text {F.O. }}\left(p_{\mathrm{T}}\right)-\Sigma_{\text {res }, \exp }\left(p_{\mathrm{T}}\right)$

multiplicative matching

$$
\begin{aligned}
& \Sigma_{\text {matched }}^{\text {mult }}\left(p_{\mathrm{T}}\right)= \\
& \quad \Sigma_{\mathrm{res}}\left(p_{\mathrm{T}}\right) \frac{\Sigma_{\mathrm{F} . \mathrm{O} .}\left(p_{\mathrm{T}}\right)}{\Sigma_{\mathrm{res}, \exp }\left(p_{\mathrm{T}}\right)}
\end{aligned}
$$

- there's no rigorous theory argument to favour a prescription over the other
- additive: probably the more natural choice, simpler and clear
- numerically delicate when $p_{\mathrm{T}} \rightarrow 0$ (F.O. result needs to be extremely stable)
- multiplicative: numerically more stable, as physical suppression at small p_{T} fixes potentially unstable F.O. results
- allows to include constant terms from F.O.

Multiplicative vs Additive Matching

- for $p_{\mathrm{T}, \mathrm{H}}$ at N3LL, used mult. matching: constant terms at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)$ recovered without the need of knowing analytically coefficient and hard functions.

$$
\Sigma_{\mathrm{F} . \mathrm{O} .}=\sigma_{p p \rightarrow H}^{\mathrm{N} 3 \mathrm{LO}}-\int_{p_{\mathrm{T}}} d p_{\mathrm{T}}^{\prime} \frac{d \sigma_{p p \rightarrow H j}^{\mathrm{NNLO}}}{d p_{\mathrm{T}}^{\prime}}
$$

- in additive matching, one would instead need $C^{(3)}$ and $H^{(3)}$ in effective luminosity $\mathcal{L}_{\mathrm{N}^{3} \text { LL }}$
- to estimate higher-order logarithmic corrections, introduce resummation scale Q :

$$
L \equiv \ln \frac{M}{k_{\mathrm{T}, 1}}=\ln \frac{Q}{k_{\mathrm{T}, 1}}-\ln \frac{Q}{M}
$$

and then vary Q, making sure that the first term is larger than the second, as we are in fact expanding about $\ln \left(Q / k_{\mathrm{T}, 1}\right)$.

- in resummation formula, use replacement above in Sudakov and parton densities. Expand about $\ln Q / k_{\mathrm{T}, 1}$ and reabsorb $\ln Q / M$ in H and C functions, entering the generalized luminosities

$$
\begin{gathered}
H^{(1)}\left(\mu_{R}\right) \rightarrow \tilde{H}^{(1)}\left(\mu_{R}, x_{Q}\right)=H^{(1)}\left(\mu_{R}\right)+\left(-\frac{1}{2} A^{(1)} \ln x_{Q}^{2}+B^{(1)}\right) \ln x_{Q}^{2}, \quad x_{Q}=Q / M \\
C_{i j}^{(1)}(z) \rightarrow \tilde{C}_{i j}^{(1)}\left(z, \mu_{F}, x_{Q}\right)=C_{i j}^{(1)}(z)+\hat{P}_{i j}^{(0)}(z) \ln \frac{x_{Q}^{2} M^{2}}{\mu_{F}^{2}}
\end{gathered}
$$

- we are now studying different matching scheme for DY ($p_{\mathrm{T}, \mathrm{Z}}$ and ϕ^{*}).
- $p p \rightarrow Z j$ at NNLO from nnLoJet, Gehrmann-De Ridder et al., '16
- we are comparing different schemes, with their uncertainty band, and against data as well.

