NNLOPS for Drell-Yan production

Emanuele Re

CERN \& LAPTh Annecy

pTZ and pTW theory meeting
CERN, 25 January 2018

towards NNLO+PS

- what do we need and what do we already have?

	V (inclusive)	V+j (inclusive)	V+2j (inclusive)
V @ NLOPS	NLO	LO	shower
VJ @ NLOPS	$/$	NLO	LO
V-VJ @ NLOPS	NLO	NLO	LO
V @ NNLOPS	NNLO	NLO	LO

傕 a merged V-VJ generator is almost OK

towards NNLO+PS

- what do we need and what do we already have?

	V (inclusive)	V+j (inclusive)	V+2j (inclusive)
V @ NLOPS	NLO	LO	shower
VJ @ NLOPS	$/$	NLO	LO
V-VJ @ NLOPS	NLO	NLO	LO
V @ NNLOPS	NNLO	NLO	LO

傕 a merged V -VJ generator is almost OK

- many of the multijet NLO+PS merging approaches work by combining 2 (or more) NLO+PS generators, introducing a merging scale
- POWHEG + MiNLO: no need of merging scale: it extends the validity of an NLO computation with jets in the final state in regions where jets become unresolved

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{q}^{2}\left(q_{T}, m_{V}\right)\left[B\left(1-2 \Delta_{q}^{(1)}\left(q_{T}, m_{V}\right)\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{q}^{2}\left(q_{T}, m_{V}\right)\left[B\left(1-2 \Delta_{q}^{(1)}\left(q_{T}, m_{V}\right)\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

$$
\bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{q}^{2}\left(q_{T}, m_{V}\right)\left[B\left(1-2 \Delta_{q}^{(1)}\left(q_{T}, m_{V}\right)\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}}^{(\mathrm{NLO})} \int d \Phi_{\mathrm{r}} R\right]
$$

- MiNLO-improved VJ yields finite results also when 1 st jet is unresolved $\left(q_{T} \rightarrow 0\right)$
- $\bar{B}_{\text {MiNLO }}$ ideal to extend validity of VJ-POWHEG [called "VJ-MiNLo" hereafter]
- formal accuracy of VJ-MiNLO for inclusive observables carefully investigated
[Hamilton et al., 1212.4504]
- VJ-MiNLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{VJ}-\mathrm{MiNLO}}=O_{\mathrm{V} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MinLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{1.5}\right)$ " terms

"Improved" MiNLO \& NLOPS merging

- formal accuracy of VJ-MiNLO for inclusive observables carefully investigated
[Hamilton et al., 1212.4504]
- VJ-MiNLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive ($\mathrm{NLO}^{(0)}$), "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{VJ}-\mathrm{MiNLO}}=O_{\mathrm{V} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MiNLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{1.5}\right)$ " terms
- Possible to improve VJ-MiNLO such that inclusive NLO is recovered ($\mathrm{NLO}^{(0)}$), without spoiling NLO accuracy of $V+j\left(\mathrm{NLO}^{(1)}\right)$.
- accurate control of subleading small- p_{T} logarithms is needed (scaling in low- p_{T} region is $\alpha_{\mathrm{S}} L^{2} \sim 1$, i.e. $L \sim 1 / \sqrt{\alpha_{\mathrm{S}}}$!)

"Improved" MiNLO \& NLOPS merging

- formal accuracy of VJ-MiNLO for inclusive observables carefully investigated
[Hamilton et al., 1212.4504]
- VJ-MiNLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{VJ}-\mathrm{MiNLO}}=O_{\mathrm{V} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MiNLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{1.5}\right)$ " terms
- Possible to improve VJ-MiNLO such that inclusive NLO is recovered ($\mathrm{NLO}^{(0)}$), without spoiling NLO accuracy of $V+j\left(\mathrm{NLO}^{(1)}\right)$.
- accurate control of subleading small- p_{T} logarithms is needed (scaling in low- p_{T} region is $\alpha_{\mathrm{S}} L^{2} \sim 1$, i.e. $L \sim 1 / \sqrt{\alpha_{\mathrm{S}}}$!)

Effectively as if we merged $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging different samples (no merging scale used: there is just one sample).

Drell-Yan at NNLO+PS

- VJ-MiNLO+POWHEG generator gives V-VJ @ NLOPS

	V (inclusive)	$\mathrm{V}+\mathrm{j}$ (inclusive)	$\mathrm{V}+2 \mathrm{j}$ (inclusive)
$\sqrt{ }$ V-VJ @ NLOPS	NLO	NLO	LO
V @ NNLOPS	NNLO	NLO	LO

Drell-Yan at NNLO+PS

- VJ-MiNLO+POWHEG generator gives V-VJ @ NLOPS

	V (inclusive)	$\mathrm{V}+\mathrm{j}$ (inclusive)	$\mathrm{V}+2 \mathrm{j}$ (inclusive)
$\sqrt{ } \mathrm{V}-\mathrm{VJ}$ @ NLOPS	NLO	NLO	LO
V @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{VJ}-\mathrm{MiNLO}}}
$$

- by construction NNLO accuracy on fully inclusive observables ($\sigma_{\text {tot }}, y_{V}, M_{V}, \ldots$) $[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of VJ-MiNLO in 1-jet region

Drell-Yan at NNLO+PS

- VJ-MiNLO+POWHEG generator gives V-VJ @ NLOPS

	V (inclusive)	$\mathrm{V}+\mathrm{j}$ (inclusive)	$\mathrm{V}+2 \mathrm{j}$ (inclusive)
$\sqrt{ } \mathrm{V}-\mathrm{VJ} @ \mathrm{NLOPS}$	NLO	NLO	LO
$\sqrt{ } \mathrm{V}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{VJ}-\mathrm{MiNLO}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables $\left(\sigma_{\text {tot }}, y_{V}, M_{V}, \ldots\right)[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of VJ-MiNLO in 1-jet region

Drell-Yan at NNLO+PS

- VJ-MiNLO+POWHEG generator gives V-VJ @ NLOPS

	V (inclusive)	$\mathrm{V}+\mathrm{j}$ (inclusive)	$\mathrm{V}+2 \mathrm{j}$ (inclusive)
$\sqrt{ } \mathrm{V}-\mathrm{VJ} @ \mathrm{NLOPS}$	NLO	NLO	LO
$\sqrt{ } \mathrm{V}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{VJ}-\mathrm{MiNLO}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables $\left(\sigma_{\text {tot }}, y_{V}, M_{V}, \ldots\right)[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of VJ-MiNLO in 1-jet region
- notice: formally works because no spurious $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$ terms in V-VJ @ NLOPS

Drell-Yan at NNLO+PS

- VJ-MiNLO+POWHEG generator gives V-VJ @ NLOPS

	V (inclusive)	$\mathrm{V}+\mathrm{j}$ (inclusive)	$\mathrm{V}+2 \mathrm{j}$ (inclusive)
$\sqrt{ } \mathrm{V}-\mathrm{VJ} @ \mathrm{NLOPS}$	NLO	NLO	LO
$\sqrt{ } \mathrm{V}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{VJ}-\mathrm{MiNLO}}}=\frac{c_{0}+c_{1} \alpha_{\mathrm{S}}+c_{2} \alpha_{\mathrm{S}}^{2}}{c_{0}+c_{1} \alpha_{\mathrm{S}}+d_{2} \alpha_{\mathrm{S}}^{2}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables $\left(\sigma_{\text {tot }}, y_{V}, M_{V}, \ldots\right)[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of VJ-MiNLO in 1-jet region
- notice: formally works because no spurious $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$ terms in V-VJ @ NLOPS
- Variants for reweighting $\left(W\left(\Phi_{B}, p_{T}\right)\right)$ are also possible:
- freedom to distribute "NNLO/NLO K-factor" only over medium-small p_{T} region
- For Drell-Yan, needs to use variables specifing the Born process $p p \rightarrow \ell \bar{\ell}$
\hookrightarrow also need variable to take into account spin-correlation in vector-boson decay products
- we need a 3-d differential distribution, and there is some freedom in choosing the 3 variables
\hookrightarrow Useful to make choices such that bins in multidimensional distribution are \sim uniformly populatad
- we have chosen:
- V-boson rapidity: y_{V}
- variable for dilepton invariant mass: $\arctan \left(\left(m_{\ell \ell}^{2}-M_{V}^{2}\right) /\left(\Gamma_{V} M_{V}\right)\right)$
- angle between electron and beam in frame where $p_{V}^{z}=0$

NNLO+PS I

- For Drell-Yan, needs to use variables specifing the Born process $p p \rightarrow \ell \bar{\ell}$
\hookrightarrow also need variable to take into account spin-correlation in vector-boson decay products
- we need a 3-d differential distribution, and there is some freedom in choosing the 3 variables
\hookrightarrow Useful to make choices such that bins in multidimensional distribution are \sim uniformly populatad
- we have chosen:
- V-boson rapidity: y_{V}
- variable for dilepton invariant mass: $\arctan \left(\left(m_{\ell \ell}^{2}-M_{V}^{2}\right) /\left(\Gamma_{V} M_{V}\right)\right)$
- angle between electron and beam in frame where $p_{V}^{z}=0$
- Variants for W are possible:

$$
\begin{array}{r}
W\left(\Phi_{B}, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma_{A}^{\mathrm{NNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}+\left(1-h\left(p_{T}\right)\right) \\
d \sigma_{A}=d \sigma h\left(p_{T}\right), \quad \quad d \sigma_{B}=d \sigma\left(1-h\left(p_{T}\right)\right), \quad h=\frac{\left(\beta m_{V}\right)^{2}}{\left(\beta m_{V}\right)^{2}+p_{T}^{2}}
\end{array}
$$

- $h\left(p_{T}\right)$ controls where the NNLO/NLO K-factor is distributed (in the high- k_{T} region, there is no improvement in including it)
- β cannot be too small, otherwise resummation spoiled

NNLO+PS II

In 1309.0017, and for DY too, we use

$$
\begin{gathered}
W\left(\Phi_{B}, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma^{\mathrm{NNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\mathbf{\Phi})\right)-\int d \sigma_{B}^{\mathrm{MiNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta\left(\Phi_{B}-\Phi_{B}(\boldsymbol{\Phi})\right)}+\left(1-h\left(p_{T}\right)\right) \\
d \sigma_{A}=d \sigma h\left(p_{T}\right), \quad d \sigma_{B}=d \sigma\left(1-h\left(p_{T}\right)\right), \quad h=\frac{\left(\beta m_{V}\right)^{2}}{\left(\beta m_{V}\right)^{2}+p_{T}^{2}}
\end{gathered}
$$

- one gets exactly $\left(d \sigma / d \Phi_{B}\right)_{\mathrm{NNLO}}$ (no α_{S}^{3} terms)
- we used $h\left(p_{T}^{j_{1}}\right)$, and $\beta=1$
inputs for following plots:
- scale choices: NNLO input with $\mu=m_{V}$, VJ-MinLo has its own scale
- PDF: everywhere MSTW2008 NNLO
- NNLO from DYNNLO [Catani,Cieri,Ferrera et al.] (3pts scale variation, but 7pts in pure NNLO plots)
- MiNLO: 7pts scale variation (using POWHEG BOX-V2 machinery)
- events reweighted at the LH level: 21 -pts scale variation $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$

settings for plots shown

inputs for following plots:

- used p_{T}-dependent reweighting $\left(W\left(\Phi_{B}, p_{T}\right)\right)$, smoothly approaching 1 at $p_{T} \gtrsim m_{V}$
- scale choices: NNLO input with $\mu=m_{V}$, VJ-MiNLO has its own scale
- PDF: everywhere MSTW2008 NNLO
- NNLO from DYNNLO
[Catani,Cieri,Ferrera et al., '09] (3pts scale variation, but 7pts in pure NNLO plots)
- MiNLO: 7pts scale variation (using POWHEG BOX-V2 machinery)
- events reweighted at the LH level: 21-pts scale variation $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$
- tunes: Pythia 6: "Perugia P12-M8LO" , Pythia8: "Monash 2013"

Z@NNLOPS, PS level

- $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$ pts scale var. in nNLOPS, 7 pts in NNLO
- agreement with DYnnlo
- scale uncertainty reduction wrt ZJ-MinLO

Z@NNLOPS, PS level

- NNLOPS: smooth behaviour at small k_{T}, where NNLO diverges
- at high p_{T}, all computations are comparable (band size similar)
- at very high p_{T}, DYnNLO and ZJ-MinLO (and hence NNLOPS) use different scales!

Z@NNLOPS, PS level

- NNLO envelope shrinks at $\sim 10 \mathrm{GeV}$; NNLOPS inherits it
- notice that in Sudakov region, NNLO rescaling doesn't alter shape from Minco

W@NNLOPS, PS level

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect:
$p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- η_{ℓ} is NNLO everywhere

W@NNLOPS, PS level

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect:
$p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T, V}$)

W@NNLOPS, PS level

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect:
$p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T, V}$)
- just above peak, DYnNLO uses $\mu=M_{W}$, WJ-MinLO uses $\mu=p_{T, W}$
- here $0 \lesssim p_{T, W} \lesssim M_{W}$ (so resummation region does contribute)

Vector boson p_{T} : resummation

- DyQt: NNLL+NNLO
[Bozzi,Catani,Ferrera, et al., '10]

$$
\mu_{R}=\mu_{F}=m_{Z}[7 \mathrm{pts}], \quad Q_{\mathrm{res}}=m_{Z} \quad\left[+Q_{\mathrm{res}}=2 m_{Z}, m_{Z} / 2\right]
$$

- agreement with resummation good (PS only), but not perfect
- formal accuracy not the same!
- shrinking of bands at 10 GeV makes it looking perhaps "worse" than what it is...
- at 30-50 GeV, bands similar to DyQT

Vector boson p_{T} : resummation

- similar pattern, although some differences visible between Pythia6 and Pythia8
- NP/tune effects are not negligible

Vector boson: comparison with data $\left(p_{T, Z}\right)$

- good agreement with data (PS+hadronisation+MPI)
- band shrinking at $\sim 10 \mathrm{GeV}$
- Pythia8 is slightly harder at large p_{T}, and in less good agreement at small p_{T}
- part of this can be considered a genuine uncertainty (different shower)
- specific tune likely to have an impact at small p_{T}

NNLOPS vs. NLOPS

- different terms in Sudakov, although both contain NLL terms in momentum space
- in NLOPS: α_{S} in radiation scheme; in NNLOPS: MinLo Sudakov
- formally they have the same logarithmic accuracy (as supported by above plot)
- at large p_{T}, difference as expected

