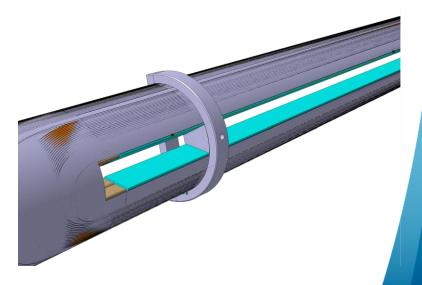


11 T Task Force Meeting Coil Size and Rigidity

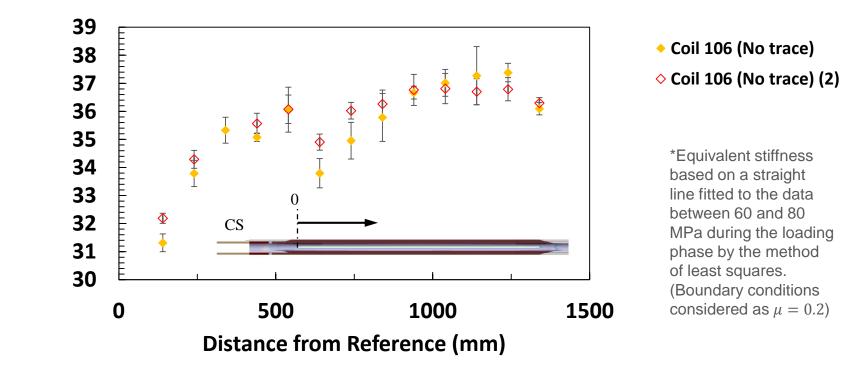
S. Izquierdo Bermudez, M. Daly, S. Ferradas Troitino, C. Hannes Loffler, J. L. Rudeiros Fernandez, P. Ferracin, A. Carlon Zurita, P. Ferracin, J. C. Perez 7th February 2018

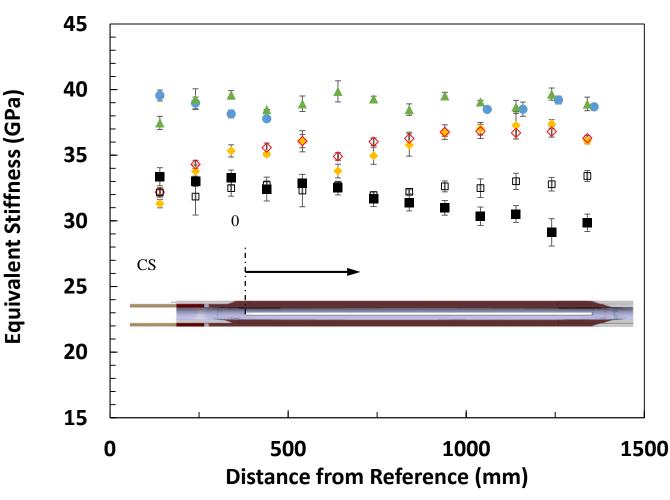


11 T task force meeting #7

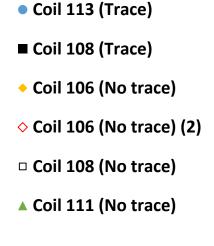
Faro Arm Measurements – CR03

- Loading plates completely detached form the coil due to the cutting operations.
- Two options:
 - OPTION 1: Re-glue the loading plates (additional ~ 0.1 mm of glue, i.e., soft material that will impact the faro arm measurements vs. Emodulus)
 - OPTION 2: Build a small tool to keep in place the loading plate during the faro arm measurements.
 - We should be able to keep in place the loading plate even if it is not-glued to the coil during the E-modulus measurements and collaring mock-up
 - We decided to go for this option, we should be ready to measure next week.




Coil stiffness – Variation along the length

- Coil 106 was re-measured to confirm the 20 % variation of coil stiffness along the coil length.
- Measurements are consistent, meaning that the measurements are reliable and the difference on stiffness is related to the coil

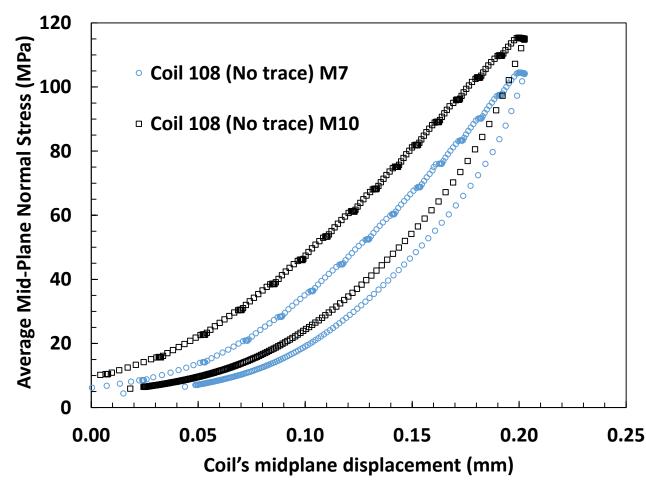


Variation of equivalent stiffness along the length

Coil stiffness – Difference among coils

Variation of equivalent stiffness along the length

*Equivalent stiffness based on a straight line fitted to the data between 60 and 80 MPa during the loading phase by the method of least squares. (Boundary conditions considered as $\mu = 0.2$)


Coil stiffness – Difference among coils

	Magnet	Strand lay out	cu/sc	Glass heater-coil	Azimuthal oversize*		Interlayer Quench Heater	End Saddles	Wedges Type	End Spacers	Eq. Stiffnes' [GPa]	
				mm	L, mm	R, mm					w.o. trace	w. trace
Coil 105	MBHSM101	RRP 108/127	1.22	0.1	-0.282	-0.319	no	SLS 316LN	2 segments	SLS 316LN	35	34
Coil 106	MBHSP101 MBHSP102 MBHDP101	RRP 108/127	1.22	0	-0.059	-0.138	no	G11	2 segments	SLS 316LN	36	
Coil 107	MBHSP101	RRP 108/127	1.22	0.1	-0.053	-0.105	no	G11	2 segments	SLS 316LN		
Coil 108	MBHSP102 MBHDP101	RRP 132/169	1.22	0.1	-0.076	-0.040	no	G11	2 segments	SLS 316LN	33	32
Coil 109	MBHSP103 MBHDP101 MBHDP102 (ap SP104b)	RRP 132/169	1.27	0	-0.041	-0.085	no	G11	2 segments	SLS 316LN		
Coil 111	MBHSP103 MBHDP101	RRP 132/169	1.27	0.1	-0.216	-0.171	no	G11	2 segments	SLS 316LN	39	
Coil 112	MBHSP104 MBHDP102 (ap SP104b)	RRP 132/169	1.27	0.08	-0.148	-0.141	no	G11	full length	SLS 316LN		
Coil 113	MBHSP104	RRP 132/169	1.27	0.08	-0.053	-0.258	no	G11	full length	SLS 316LN		39
Coil 114	MBHSP105 MBHDP102 (ap SP105b)	RRP 150/169	0.98	0 (heaters imprg)	-0.108	-0.222	no	G11	full length	SLS 316LN		
Coil 115	MBHSP105 MBHDP102 (ap SP105b)	RRP 150/169	0.97	0 (heaters imprg)	-0.097	-0.174	no	G11	full length	SLS 316LN		
Coil 116	MBHSP106	RRP 150/169	0.97	0 (heaters imprg)	-0.191	-0.094	yes	G11	full length	SLS 316LN		
Coil 117	MBHSP106	RRP 150/169	0.97	0 (heaters imprg)	-0.096	-0.136	yes	G11	full length	SLS 316LN coated		
Coil 110	Test coil	RRP 132/169		0 (heaters imprg)	-0.274	-0.303	yes	G11	full length	SLS 316LN		
Coil 201	Test coil	PIT		0 (heaters imprg)	-0.096	-0.136	yes	G11	full length			

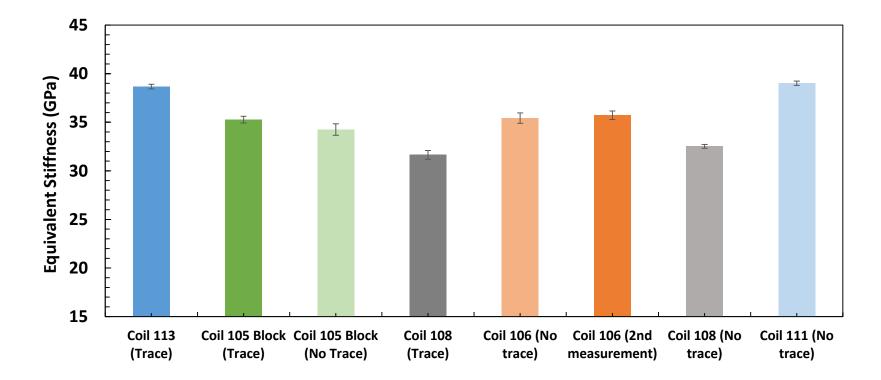
*Negative means bigger than nominal

** Equivalent stiffness based on a straight line fitted to the data between 60 and 80 MPa during the loading phase by the method of least squares. (Boundary conditions considered as $\mu = 0.2$)

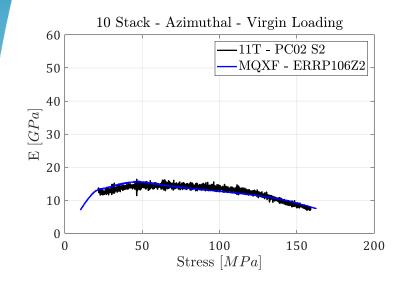
Mid-plane displacement vs. average stress

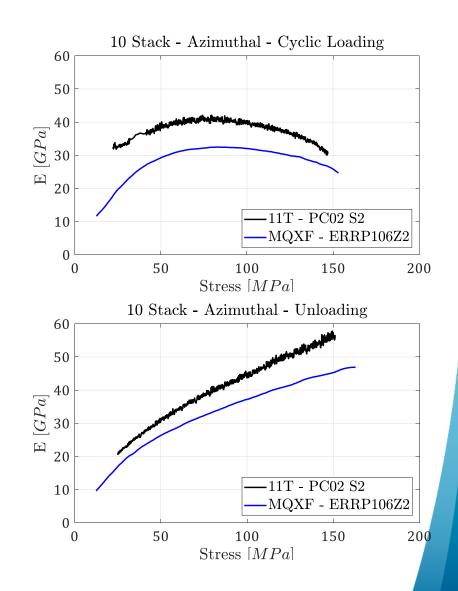
Coil size vs. Mid-plane stress

"Coil mid-plane displacement 0" represents the nominal size of the calibration steel block at 5 MPa.

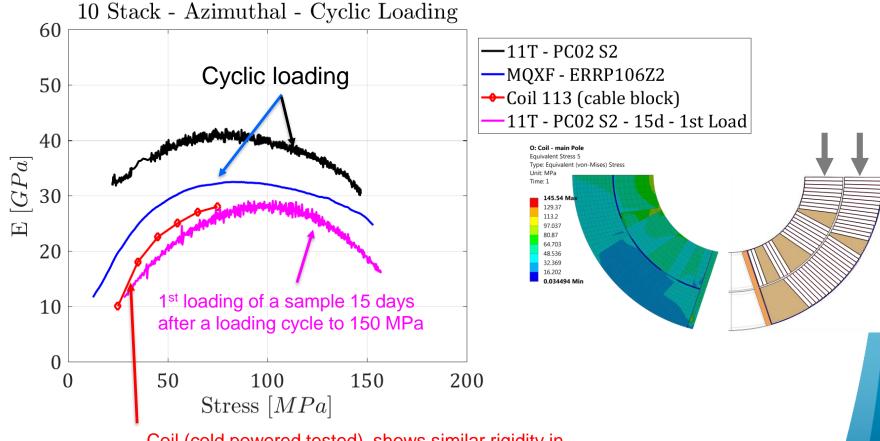

Positive mid-plane displacement corresponds to compression of the coil.

Additional slides



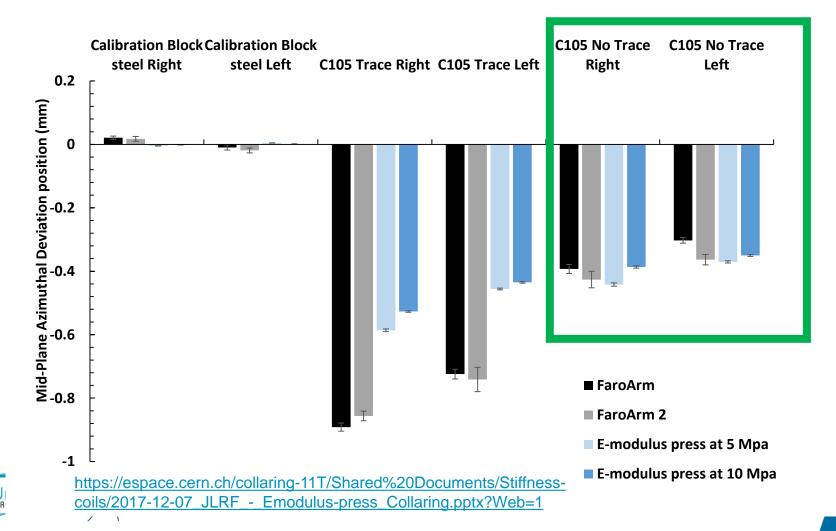

*Equivalent stiffness based on a straight line fitted to the data between 60 and 80 MPa during the loading phase by the method of least squares. (Boundary conditions considered as $\mu = 0.2$)

Ten stacks – MQXF vs 11 T


- Incredible superposition for virgin loading
 - Explained by copper hardening?
- Cycling behaviour:
 - The 'shape' is very similar
 - The 11T specimen are slightly stiffer ~5-10 GPa

Ten Stacks vs Coil Measurements

Results on coil measurements need further thinking. We will have a better view once we measure a virgin coil segment.



Coil (cold powered tested), shows similar rigidity in the first loading than ten stacks cyclic reloading (but loading goes only to 70 MPa)

Coil Size Measurements

- Faro arm measurements vs coil measurements under 5-10 MPa are very consistent!! ©©
 - More coils are being measured to obtain statistics

Additional activities & Plans

- Faro arm and CMM measurements on coil segments and parts for 1st collaring set up (see Paolo's presentation).
- E-modulus & coil size measurements in the press on-going on available short model coils (108/111/106) for statistics.
- As soon as CR003 coil segments are available, full characterization for the 2nd collaring mock up test.
 - This is an important test, since it is the first time we are going to be able to measure a virgin coil
- 10 stacks measurements on cable stacks (old vs new insulation lay-out in final conductor layout)
- Pressure uniformity test on samples with 25 vs 31 mm of mica.

