

Nb₃Sn conductor R&D Summary of the activities @ UNIGE

Florin BUTA, Christian BARTH, José FERRADAS, Luc GAMPERLE, Carmine SENATORE

Group of Applied Superconductivity
Department of Quantum Matter Physics
University of Geneva, Switzerland

Our conductor related activities in FCC

Florin BUTA

Addendum FCC-GOV-CC-0112 (KE3545/ATS) Investigations on the enhancement of J_c in $(Nb,X)_3Sn$ superconductors by internally oxidized ZrO_2 particles

@ CERN: Simon HOPKINS, Bernardo BORDINI, Amalia BALLARINO

H2020 EuroCirCol WP5 Task 5: Conductor studies Electromechanical studies – effects of the transverse stress

@ CERN: Bernardo BORDINI, Davide TOMMASINI

Christian BARTH José FERRADAS Luc GAMPERLI

Our conductor related activities in FCC

Addendum FCC-GOV-CC-0112 (KE3545/ATS) Investigations on the enhancement of J_c in $(Nb,X)_3Sn$ superconductors by internally oxidized ZrO2 particles

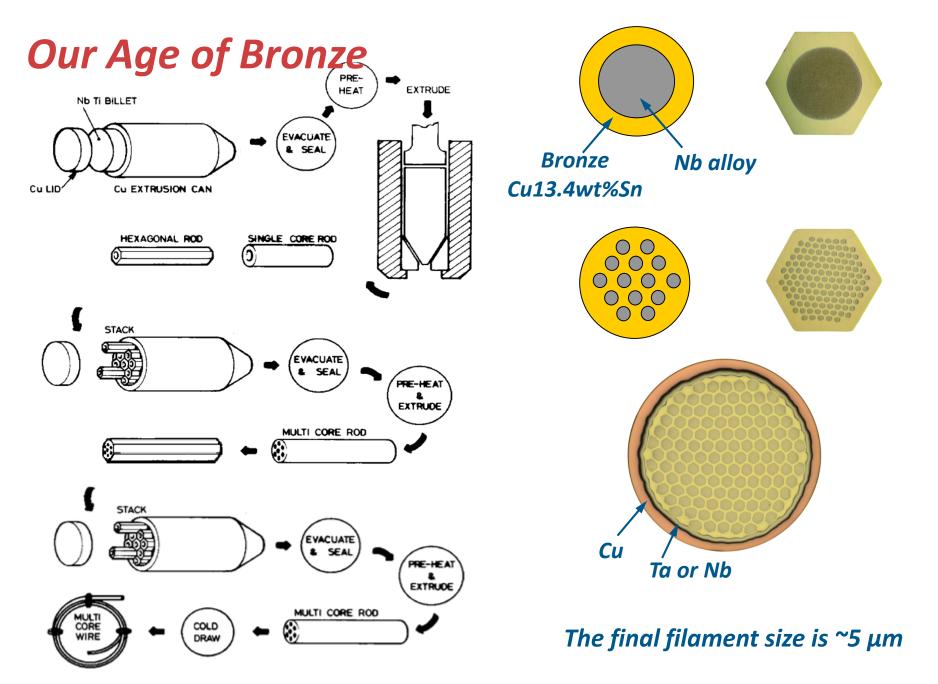
@ CERN: Simon HOPKINS, Bernardo BORDINI, Amalia BALLARINO

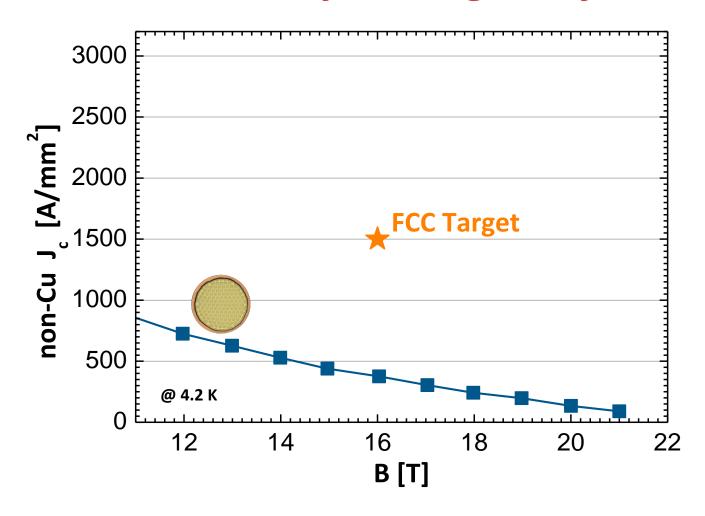
H2020 EuroCirCol WP5 Task 5: Conductor studies Electromechanical studies – effects of the transverse stress @ CERN: Bernardo BORDINI, Davide TOMMASINI

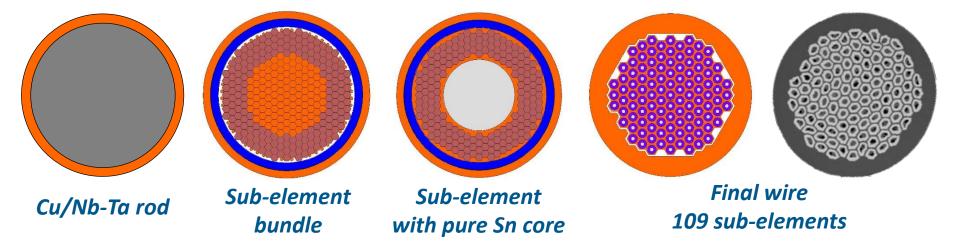

An (almost) unique equipment

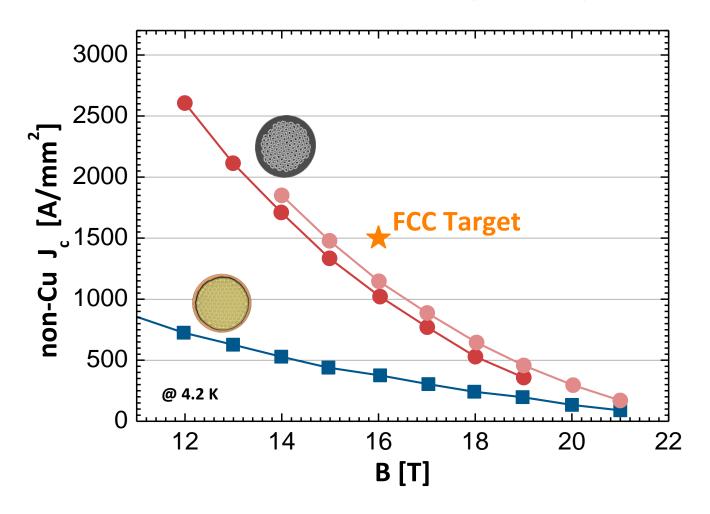
Laboratory for the development of superconducting wires @

- Wire drawing bench 1.5t
- Wire drawing bull-block 0.3t
- Wire drawing dies from Ø15 to Ø0.2 mm
- Hot-rolling mill and hot-rolling groove roller
- Rolling mill with tungsten carbide rollers
- Powered turks head machine
- Two swaging machines





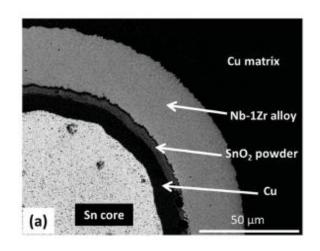

Critical current density vs. magnetic field


R&D of internal Sn Nb₃Sn conductors

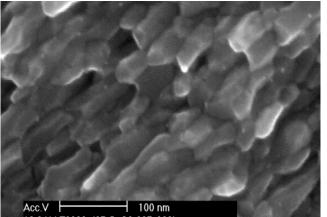
A collaboration between UNIGE and Bruker BioSpin funded by

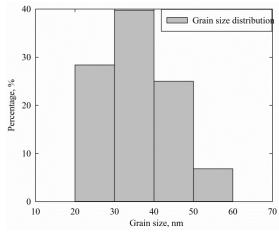
KTI/CTI
DIE FORDIRACIETUR FÜR INNOVATION
L'AGENCE POUR LA PROMOTION DE L'UNNOVATION
L'AGENCE POUR LA PROMOTION DE L'UNNOVATION
L'AGENCE POUR LA PROMOTION DE LL'UNNOVATION
L'AGENCE POUR LA PROMOTION DE LL'UNNOVATIONE
L'AGENCE POUR LA PROMOTION DE LL'UNNOVATIONE
L'AGENCE POUR LA PROMOTION DE LL'UNNOVATIONE
L'AGENCE POUR LA PROMOTION DE L'UNNOVATIONE
L'AGENCE POUR L'UNNOVATIONE
L'AGENCE POUR LA PROMOTION DE L'UNNOVATIONE
L'AGENCE POUR L'AG

Critical current density vs. magnetic field


Internal oxidation and grain refinement in Nb₃Sn

@ Ohio State University

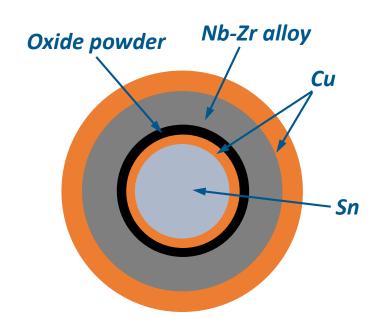

Idea from Benz (1968) to form fine precipitates in Nb to impede the A15 grain growth


Use of a Nb-Zr alloy: Zr has stronger affinity to oxygen than Nb

Oxygen supply added to the composite: oxidation of Zr and formation of nano-ZrO₂

X. Xu et al., APL <u>104</u> (2014) 082602 X. Xu et al., Adv. Mat. 27 (2015) 1346

Average grain size is reduced down to < 50 nmGreatly enhanced pinning in binary Nb₃Sn


R&D on internal oxidation in Nb₃Sn @ UNIVERSITÉ DE GENÈVE

- Explore routes leading to the increase of the critical current densities in Nb₃Sn by reducing the grain sizes and increasing the upper critical field
- Evaluate different oxygen sources for the internal oxidation of Zr atoms present in the Nb filaments
- Addition of suitable dopants to enhance the upper critical field
- Optimize wire configurations and heat treatments

R&D on internal oxidation in Nb₃Sn @ UNIVERSITÉ DE GENÈVE

Ohio State Univ. Configuration

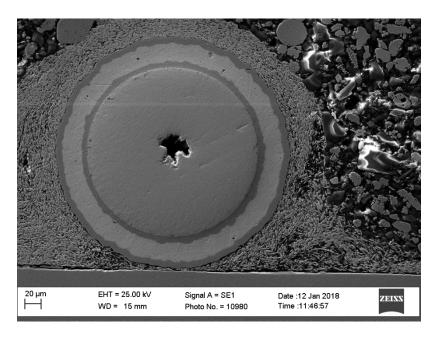
UNIGE configuration

Filament material - oxygen source combinations

Nb alloy	Metal oxide	Status
Nb-7.5wt%Ta	none	
Nb-7.5wt%Ta	MoO_3	
Nb-7.5wt%Ta	SnO ₂	planned
Nb-1wt%Zr	MoO ₃	
Nb-1wt%Zr	SnO ₂	
Nb-1wt%Zr	CuO	being drawn
Nb-7.5wt%Ta-1wt%Zr	SnO ₂	being drilled
Nb-7.5wt%Ta-2wt%Zr	SnO ₂	being drilled

Filament material - oxygen source combinations

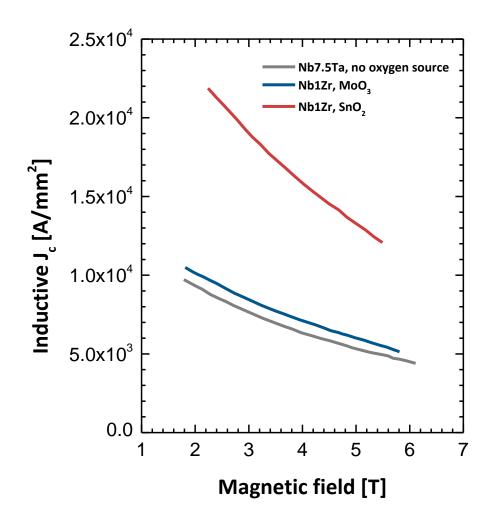
Nb alloy	Metal oxide	Status
Nb-7.5wt%Ta	none	
Nb-7.5wt%Ta	MoO ₃	
Nb-7.5wt%Ta	SnO ₂	planned
Nb-1wt%Zr	MoO ₃	
Nb-1wt%Zr	SnO ₂	
Nb-1wt%Zr	CuO	being drawn
Nb-7.5wt%Ta-1wt%Zr	SnO ₂	being drilled
Nb-7.5wt%Ta-2wt%Zr	SnO ₂	being drilled

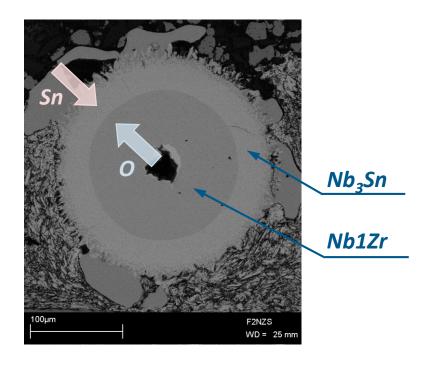

Filament material - oxygen source combinations

Nb alloy	Metal oxide	Status
Nb-7.5wt%Ta	none	
Nb-7.5wt%Ta	MoO ₃	
Nb-7.5wt%Ta	SnO ₂	planned
Nb-1wt%Zr	MoO ₃	
Nb-1wt%Zr	SnO ₂	
Nb-1wt%Zr	CuO	being drawn
Nb-7.5wt%Ta-1wt%Zr	SnO ₂	being drilled
Nb-7.5wt%Ta-2wt%Zr	SnO ₂	being drilled

How to select the oxygen source?

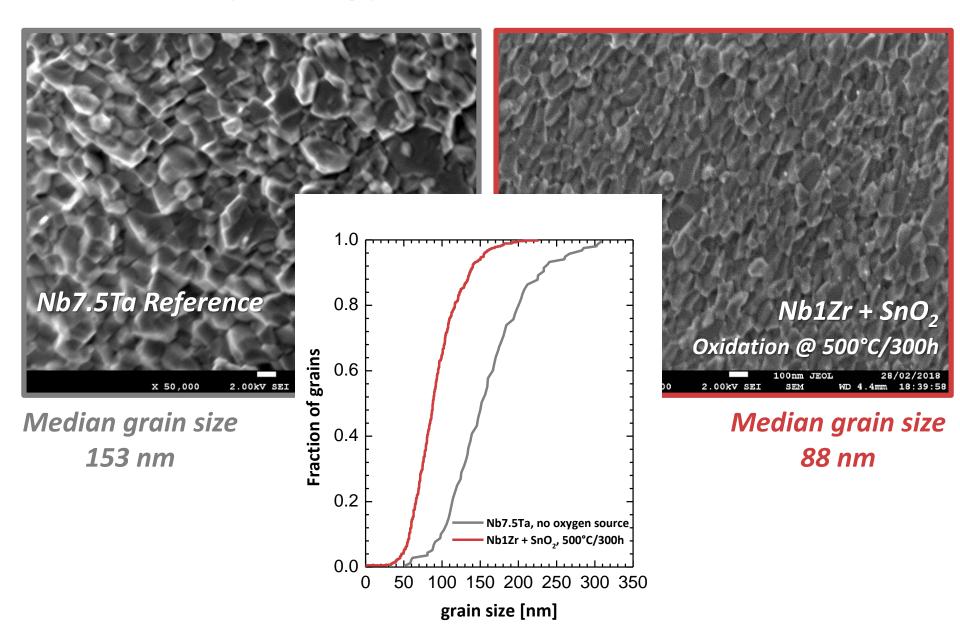
- high Gibbs free energy of formation
- low hardness that would make it compatible with wire fabrication
- the metal resulting from the reduction has not to affect superconductivity


Sample fabrication



0.22 mm diameter wires of Nb alloy were prepared by cold deformation of a 12 mm diameter rod with nano-sized powders compacted in a central hole

- The Nb alloy wire was then electroplated successively with: Cu, Sn, Cu
- The deposit thicknesses were varied to achieve different Cu/Sn and Nb/Sn ratios
- Oxygenation treatment was performed on the Nb alloy wire prior to the electroplating or on the full wire prior to the A15 formation


Critical current density

Oxidation treatment @ 500°C/50h

Grain morphology

Our conductor related activities in FCC

Addendum FCC-GOV-CC-0112 (KE3545/ATS) Investigations on the enhancement of J_c in $(Nb,X)_3Sn$ superconductors by internally oxidized ZrO_2 particles

@ CERN: Simon HOPKINS, Bernardo BORDINI, Amalia BALLARINO

H2020 EuroCirCol WP5 Task 5: Conductor studies Electromechanical studies – effects of the transverse stress

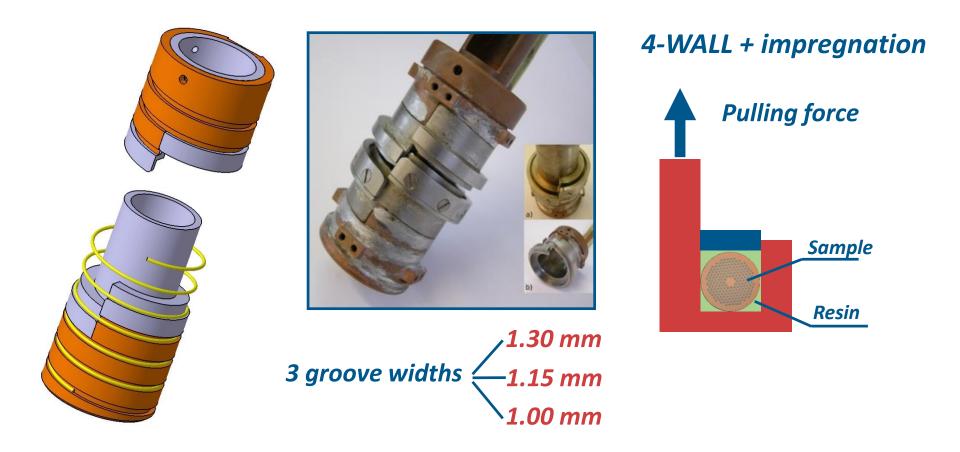
@ CERN: Bernardo BORDINI, Davide TOMMASINI

Christian BARTH José FERRADAS Luc GAMPERLE

Degradation upon transverse loads

The 16 T FCC dipoles are being designed with a peak stress of 200 MPa at operation

Are the Nb₃Sn wires in the cable able to withstand such a high stress level? Which degradation is tolerable?



Nb₃Sn Rutherford cable for HL-LHC, 40 strands

- Nb₃Sn wires are deformed during cabling
- Cables are braided with glass fiber
- The winding is impregnated with resin

Is it possible to extrapolate the behaviour of the cable from a single wire experiment?

The WASP concept for I_c vs. transverse stress

The irreversible limit of the wire under transverse stress is influenced by several parameters

- the type of impregnation (the elastic modulus of the resin)
- the redistribution of the applied stress on the wire

Rolled wire to simulate the deformation during cabling

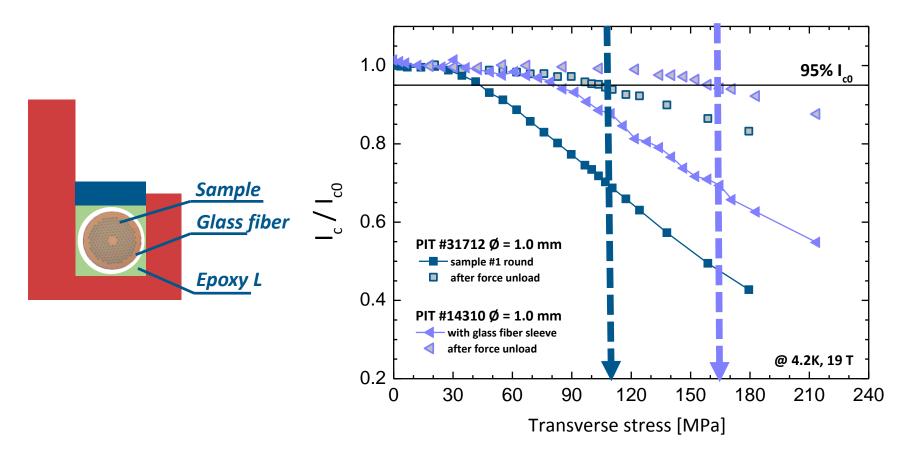
the wire layout

I_c vs. transverse stress: PIT 192 + epoxy L

The irreversible limit is defined at the force level leading to a 95% recovery of the initial I_c after unload

Here

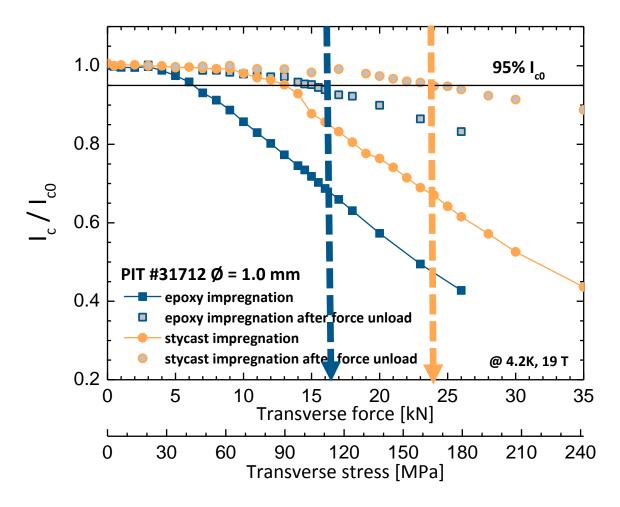
$$F_{irr} = 16 \text{ kN}$$


The corresponding irreversible stress limit is

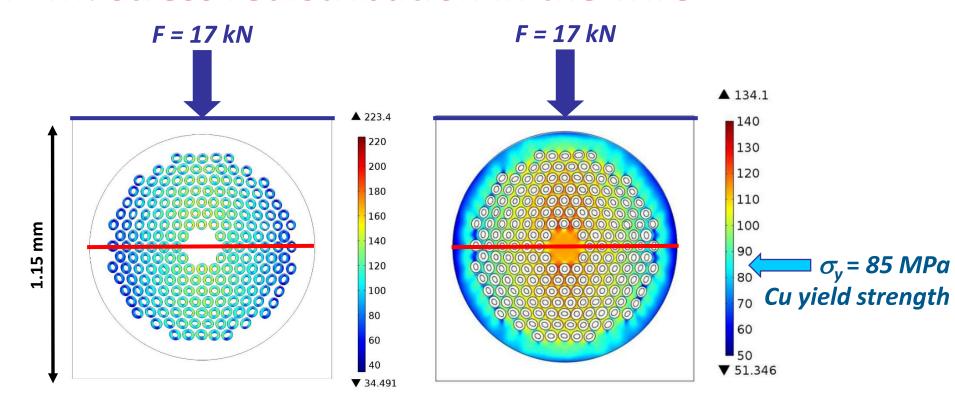
$$\sigma_{irr}$$
 = 110 MPa

where

$$Stress = \frac{Force}{groove\ length\ \times groove\ width}$$


I_c vs. transverse stress: wire in a glass fiber sleeve

Shift of σ_{irr} by > 50 MPa


The wire with glass fiber sleeve was measured in a larger groove (1.30 mm vs 1.15 mm)

I_c vs. transverse stress: epoxy L vs. stycast

The change of resin, from epoxy to stycast, leads to an increase of σ_{irr} by > 50 MPa The result is comparable to the value found with epoxy + glass fiber sleeve

FEM: stress redistribution in the wire

Irreversible degradation is determined by filament cracks and residual strain on Nb₃Sn imposed by plastically deformed Cu

FEM suggests that smaller filaments and higher Cu/nonCu ratio lead to higher stress tolerance

Summary & Outlook

- Observed a refinement of the Nb₃Sn grains but the process is still under optimization
- NbTaZr alloys: The goal is to produce material with refined grains (ZrO_2 dispersion) and enhanced B_{c2} (Ta-doping)
- Explored the irreversible stress limit of PIT wires in different load conditions
- Similar studies are being carried out on RRP wires together with FEM analysis

Thank you for the attention!

Carmine SENATORE
carmine.senatore@unige.ch
http://supra.unige.ch