ELECTRON BEAM FOCUSING

USING PERMANENT MAGNETS TO FOCUS ELECTRON BEAM FOR X-RAYS

X-RAY SOURCE: LIFE CYCLE FOR ELECTRONS

ALAS! NOT ALL ELECTRONS REACH TARGET

For the effort needed to ensure a required current reaches the x-ray target:

- Disadvantages of unfocused / lost electrons
 - Wasting energy accelerating unused electrons
 - --> Higher energy bills
 - Greater cooling load
 - --> Consumed but wasted electricity still needs removing as heat
 - Stray electron current causes
 - cavity surface damage
 - excess radiation
 - potential for RF breakdown / avalanche
 - releasing more stray electrons

ALAS! NOT ALL ELECTRONS REACH TARGET

4

FOCUSING MAGNETS CONTROL ELECTRON FLOW

- Several magnet options (photos from <u>high</u> energy physics not for x-ray machines)
 - Solenoid

• Quadrupole

Large Hadron Collider ATLAS detector solenoid Electromagnet for ~100 GeV charged particles (produced in collisions)

Final Focus Quadrupole Electromagnet for 30 GeV electron beam

ATF-2 @ KEK, Japan

5

SIMPLEST QUADRUPOLE - 4 PERMANENT MAGNETS

SIMPLEST QUADRUPOLE - 4 PERMANENT MAGNETS

- "Analogous" to optical lens
 <u>BUT</u>
 - Focusing in one tranverse plane
 - Defocusing in the orthogonal plane
- Need to remember
 - Electrons, being negative
 - flow against the (conventional) current

EXAMPLE PERMANENT MAGNETS - DISC

- Neodymium examples shown
 - Curie temperature ~300 C
- Samarium Cobalt preferred
 - Curie temperature ~ 800 C
 - Operational up to \sim 300 C
- Magnets strength quoted in kg "pull"
- Need care converting to Tesla/Gauss

HALBACH MAGNETS

Upper: Weakened Side - magnets working against each other Underneath: Strengthened side - cooperation

Halbach Array

Klaus Halbach

- Arrangement of magnets to cooperate
- Field strength increased on 1 side
- Side effect is a decrease of field strength on opposite side
- Our interest is in the stronger side

OCTAGONAL - HALBACH ARRANGEMENT

- Just getting started with Opera
 - simulation package
- Example arrangement
 - may not be appropriate
- Illustrative example
 - colours show Y (vertical) B-field component

Green = zero Red = Positive Blue = Negative

10

FORTHCOMING WORK

- Study Halbach arrangements
 - Initial study using notional octagon elements
 - Later study equivalent arrangement with stacks of disc magnets
 - Readily available from commercial suppliers
 - Easy to assemble and measure to compare with simulation
- Feed flux profiles from Opera simulations
 - into electron flow simulations (Adam's talk)