Modelling electron flow

Adam Steinberg [Undergraduate] University of Oxford 22/03/18 The question: *Can we model the evolution of particles through our system of magnets, accounting for a wide possible range of multiple parameters?*

Or in brief: *What happens when we change things?*

What might we adjust?

- At this early stage:
 - Most parameters are free
 - So we want a general as simulation to explore any potential adjustment
- Anything that is specific needs be easy to change
- In the future:
 - Will consider likely errors,
 - e.g. a magnet in slightly the wrong place

Which tools are we using?

- Generating data $\rightarrow Astra$
- Visualising data \rightarrow *Post-Processor*

What is Astra?

- A Space-Charge Tracking Algorithm
- Models an accelerator
- Calculates how particles will travel through it
- Easy to swap in/out components

Why use *Astra*? Rather than an alternative?

- At low energies, the *space charge* effect is significant
- Electrons try to push away other electrons
- Astra can handle this,
 - but calculation time will be slower

Some of our *free parameters*

General:	Electron gun:	Cavities:	Magnets:
Positions of components	Current	Max field gradient	Field geometry
Aperture width	Emittance	Length	Peak field
	Energy	Travelling/standing wave	
	Distribution	Frequency	

Some of our *free parameters*

General:	Electron gun:	Cavities:	Magnets:
Positions of components	Current (50mA)	Max field gradient (40V/m)	Field geometry (solenoid)
Aperture width (5mm)	Emittance (0.005 pi mrad)	Length (0.28m)	Peak field <i>(0.225T)</i>
	Energy (30KeV)	Travelling/standing wave (standing)	
	Distribution (uniform)	Frequency (3.1GHz)	

Some of our *free parameters*

General:	Electron gun:	Cavities:	Magnets:
Positions of components	Current (50mA)	Max field gradient (40V/m)	Field geometry (solenoid)
Aperture width <i>(5mm)</i>	Emittance (0.005 pi mrad)	Length (0.28m)	Peak field <i>(0.225T)</i>
	Energy (30KeV)	Travelling/standing wave (standing)	
	Distribution (uniform)	Frequency (3.1GHz)	
Specified in:			
Main Astra input file	Input gun file	Input field file	Input magnets file

What does our model accelerator look like?

Does the *space charge* effect matter?

- Run 2 simulations,
 - 1 with space charge effects included
 - 1 without space charge
- Note:
 - Many particles go backwards or hit the aperture on the side of the cavity

What do the *numbers* say?

So space charge is significant (as expected)

Can we improve on this?

Does it matter where you put the focusing?

Looks different on the target?

Early focusing Late focusing x vs y which fit in aperture size: 10.0mm x vs y which fit in aperture size: 10.0mm 4 2 2 >0 $\geq n_1$ -2-2 -4-4-2-24 2 2 Х Х

The numbers make it all clear

With these parameters, late focusing is more effective

What do these results tell us?

- Directly, these results don't mean much, as we have so many free parameters that *will* change
- This is a *tool* that lets us test parameters quickly and easily
- Chop and change philosophy

In summary:

- We have *a lot* of free parameters
- At this stage, we want to keep as many options open as possible
- The next step is to focus in and compare our options
- This tool will help us to quickly and easily test out ideas

Thank You