LINAC CAVITY SIMPLIFICATION

TOWARDS COST-EFFECTIVE ELECTRON BEAM ACCELERATION

WANT ELECTRONS TO GAIN ENERGY

RF WAVEGUIDE BASICS

- Waveguide purpose
 - Confine electromagnetic waves
- General form for primitive guides
 - conducting walls formed into prism shape
 - e.g. box section
 - e.g. cylinder
- Effect of confinement
 - excludes TEM mode from propagating
 - [just as light is not TEM in focal plane]
 - Useful modes TM, TE
 - (TE not used for cavity)

WAVEGUIDE FIELDS & CURRENTS

Magnetic flux lines appear as continuous loops Electric flux lines appear with beginning and end points TE mode wall currents

Internal E-field floor to ceiling

- Conventional currents positive
- Charge imbalance changes during RF cycle

E-FIELD PROFILE OF TE MODE (AT ONE INSTANT)

Negative charge on ceiling [centre line]

Positive charge on floor

LENGTH SCALE: TE MODE CUT-OFF FREQUENCY

- At cut-off: One half wavelength spans waveguide width a
 - From side wall node
 - zero vertical E-field
 - E-field screened completely by current flowing up the wall
 - to opposite wall node
- Longer waves
 - lower frequencies decay exponentially along z : non-propagating

c/f = 2a

6

TM MODE - USED IN ACCELERATOR CAVITIES

When accelerating electrons, currents flow along the walls in z directions, from iris to iris

When accelerating electrons, need e- and E to be in opposite directions

ELLIPTICAL CAVITIES

Cavity geometry constructed using reference ellipses

SPLIT CAVITY – BASIC "CLAM SHELL" HALVES

- Idea (right) implemented as CLIC prototype
 - Courtesy Walter Wuensch (CERN)
- First design prototype (9.3 GHz) slightly larger
 - Approx ¹/₂ inch radius
 - Desired length ~few 100 mm

STUDYING CAVITY RF PROPAGATION - CST

- Using simulation tool CST to model E-field, H-field in designs
- Will be taking up CERN offer of cavity design training week

RADIO FREQUENCY SOURCES FOR ACCELERATION

- Aim to use commercially available RF power sources
 - First examples based on 9.3 GHz

- Simple metallic cavity design
 - two halves joined like clamshells
 - aluminium alloy
 - readily machinable
 - good conductor of electricity (used in HV cables)
 - good thermal conductor
 - cheap
 - lightweight 2.7 x water density (vs ~9 for copper)

FORTHCOMING WORK

- Taking up offer of training in CST & Accelerator design approaches at CERN
- Work on preliminary "clam shell" cavity
 - Design (mechanical)
 - Study (simulate RF)
 - Make (Cut metal, assemble)
 - Measure (Q factor)
- Base assumption is RF in 6 GHz to 12 GHz (C or X band)
 - Starting by looking at 9.3 GHz

