

Session Summary: RTT Technology Options Study

Peter McIntosh (STFC Daresbury Laboratory)

CERN-ICEC-STFC Burying the Complexity

Re-Engineering for the Next Generation of Medical Linear Accelerators for Use in Challenging Environments

Park Royal Hotel, 22 – 23 March 2018

Accelerators in a new light

TH

Session 2: Study of Accelerator Technology Options

Time	Title	Speaker
11:00	Overview of RTT Technology Options Study	Peter McIntosh (STFC)
11:15	RTT platform specification	Rob Apsimon (Lancaster)
11:35	ODA Country RTT Operation Perspectives	Hubert Foy (ACSIS, Ghana)
11:50	Preliminary RTT Technology Option Capture	Graeme Burt (Lancaster)
12:10	Discussion	
12:30	Session Close	

Science & Technology Facilities Council

Conventional RTT Technology

Scope of RTT Options Study Programme

Assessment of suitable **linac and RF amplifier configurations** will enable exploration of **both low and high frequency technologies** which offer the ability to exploit modern, high operational performance devices which can provide a more **modular approach** for RTT system integration.

Low Frequency:

• Taking advantage of high power, solid-state amplifier solutions at frequencies below 1GHz are of particular interest, whereby such implementation can significantly simplify the RTT system integration complexity through removal of all high-voltage power supply systems.

High Frequency:

- At higher frequencies above S-band, advanced linac technologies also offer the advantage of very high accelerating gradients (approaching 50MV/m) which can significantly reduce the physical footprint of the linac structure within the RT treatment platform.
- In addition at such high frequencies, the development of **multi-beam klystron technologies** has advanced considerably, offering **high efficiencies and reduced HVPS complexity and associated costs**.

Configurations:

• In terms of the modularity which can then be employed, an assessment of configuration options will fundamentally explore the necessity for having the linac embedded within the rotating gantry and whether there are more effective approaches in **detaching not only the RF amplifier system, but also the linac structure itself**.

Technology Limitations:

• The intricacies of then providing robust RF and/or electron beam delivery through rotating RF and beam delivery interfaces has been a fundamental inhibitor for limited commercial system solutions which have adopted this approach in the past and so **reassessing current technology viability** will be of particular significance.

RTT Options Study Project Planning

	Μ		M2	M3
Assessment of RTT system constraints				
ODA consultation				
Implementation specification report (D1)		7	T	
Linac technology data collection				
RTT linac assessment study report (D2)				
RF power source data collection				
RF power source technology study report (D3)			7	T
RTT system integration assessment				
RTT system configuration report (D4)				Ž
	Kick-off Meeting Daresbury 18/1/2018		1 st Review Meeting CERN 8/3/2018	Close Meet TB
oject Start: 18 th January 2018 Dject End: 18 th April 2018			Today's Science & AS	Neeting Technology Facilities C

Table of Commercial RTT Data – R Apsimon

									Linac length	RF frequency	Max. Dose
					RF			min, room size	(m)	(GHZ)	(rad/min)
		manufacture			power	Linac	device size	needed			(e): electron
Device	Manufacture	dates	energy	RF source	(MW)	type	LxWxH (m)	LxWxH (m)			(x): X-ray
600C/D	Varian	1989 +	4/6 MeV	magnetron	2.5	SW	2.72 x 1.27 x 2.69	6.7 x 6.1 x 3.2	0.3	2.856	250-400 (x)
6EX	Varian	1999 +	4/6 MeV	magnetron	3	SW	2.72 x 1.27 x 2.69	6.7 x 6.1 x 3.2	0.3	2.856	400-600 (x)
Unique	Varian	2012 +	6 MeV	magnetron							100-600 (e)
2100/2300									1.3 - 1.45	2.856	400 (e)
C/CD	Varian	1988-2007	6-20 MeV	klystron	5.5	SW	2.59 x 1.24 x 3.71	6.1 x 7.1 x 3.1	10	2.050	250-600 (x)
21/23 series	Varian	1998-2006	6-20 MeV	klystron	5.5	SW	2.59 x 1.24 x 3.71	6.1 x 7.1 x 3.1	1.5	2.830	250-600 (X) 1000 (e)
,				,					1.3		600 (x)
Trilogy	Varian	2005 +	6-25 MeV	klystron	5.5	SW	3.71 x 1.24 x 2.64	7.8 x 6.1 x 3.1			1000 (e)
i¥	Varian	2004 ±	6-25 MeV	klystron	55	SW	3 71 y 1 24 y 2 64	78×61×31	1.3	2.856	300-600 (x) 1000 (e)
TrueBoom	Varian	2004 +	6.22 MoV	klystron	5.5	511	5.71 × 1.24 × 2.04	7.0 X 0.1 X 3.1			1000 (c)
Truebedili	Varian	2010 +	0-22 IVIEV	kiystron							
Euge	varian	2013 +		kiystron					03	2 856	
Clinac 4	Varian		4 MeV	Magnetron	2	SW			0.3	2.050	
Clinac 6X	Varian		6 MeV	Magnetron	2	SW			1.0	2.050	
Clinac 12	Varian		6-12 MeV	Magnetron	2	SW			1.0	2.030	
Clinac 18	Varian		6-18 MeV	Klystron	5	SW			1.4	2.856	
Clinac 35	Varian		7-28 MeV	Klystron	20	TW			2.25	2.856	
Precise	Flakta	1997-2005	/1-22 Mo\/	magnetron	5	TW	2 51 y 2 90 y 2 /8	65 8 6 0 8 3 2	2.5		400(e) 600(x)
Synergy	LICKLO	1337-2003	4-22 IVIEV	magnetron		144	3.31 X 3.30 X 2.40	0.5 X 0.0 X 5.2	2.5		400(e) 600(x)
Platforms	Elekta	2002 +	4-20 MeV	magnetron	5	TW	3.51 x 3.90 x 2.48	6.5 x 6.0 x 3.2			
Axesse/Infinity	Elekta	2009 +	4-18 MeV	magnetron	5	TW	3.51 x 3.90 x 2.48	6.5 x 6.0 x 3.2	2.5		400(e) 600(x)
MRLinac/Unity	Elekta										
Versa HD	Elekta	2013 +		magnetron							
Primus	Siemens	1998-2005	6-21 MeV	klystron	7.5	SW	3.09 x 1.43 x 2.60	6.1 x 5.8 x 3.0			300/900 (e)
Oncor mid-				- '							300/900 (e)
energy	Siemens	2004-2011	5-14 MeV	magnetron	2.6	SW	2.83 x 1.31 x 2.64	6.1 x 5.8 x 3.0			200-300 (x)
oncor nign energy	Siemens	2004-2011	6-21 MeV	klystron	7.5	sw	3.09 x 1.43 x 2.60	6.1 x 5.8 x 3.0			200-300 (x)*
616-61	biemens	20012022	• LI MCI	Mystron	7.0		0.00 / 21 10 / 2100		1.2		300/900 (e)*
Artiste	Siemens	2009-2011	6-23 MeV	klystron	7.5	SW	3.14 x 1.43 x 2.60	6.25 x 6.1 x 2.95			300-500 (x)*
Mevatron 6	Siemens		6 MeV	Magnetron	2	SW			0.95	2.9985	
Mevatron 12	Siemens		3-11 MeV	Magnetron	2	SW			1.35	2.9985	
Mevatron 20	Siemens		3-18 MeV	Klystron	7	SW			1.38	2.9985	
TomoHD	Accuray	2012 +	6 MeV	magnetron	2.5	SW	4.63 x 2.81 x 2.52	6.0 x 4.6 x 2.7	0.3		850 (x)
Hi-Art II	Accuray	2004 +	6 MeV	magnetron	2.6	SW	0.62 x 1.07 x 0.97	6.7 x 5.2 x 2.7	0.3		850 (x)
Radixact	Accuray	2016 +	6 MeV	magnetron							
	,	2003 + (6		0							
Cyberknife	Accuray	generations)	6 MeV	magnetron							
Vero	Mitsubishi	2011									
Coline4	NCBJ		4 MeV	magnetron	2.6						
Coline6	NCBJ		6 MeV	magnetron	3.1						
Neptune10	NCBJ		≤26 MeV	magnetron							

All systems believed to operate at 3 GHz, but difficult to find information publicly available

Almost all systems are standing wave (except for Elekta), which is more efficient for shorter structures $(< \sim 1.5 \text{ m})$

Travelling wave structures more efficient in longer structures (>~2 m)

Table 3: Summary of RTT design parameters [1, 19-46]. SW stands for standing wave and TW stands for traveling wave. * Other dose rates possible with optional extras

Design Considerations: Frequency

- RF power: $P_{RF} \propto \frac{V_{linac}^2}{\cos^2(\phi_s)\sqrt{\omega_{RF}}L_{linac}}$
- Effective shunt impedance: $R/L_{linac} \propto \sqrt{\omega_{RF}}$

ODA Country RTT Operator Survey – H Foy

Questionnaire

- **Topics development**
- Questions alignment
- Online form (https://goo.gl/cssDRv)
- Audience
 - Professional societies
 - Geographic spread
 - 30 professionals via Emailing

Feedback

- 8 submissions, 5 countries, 5 subregions
- Engineer, physicist, consultant, prof
- Institutions
 - University affiliated, public, private

QUESTIONNAIRE ON LINAC-BASED RADIOTHERAPY TREATMENT SYSTEM OPERATION IN AFRICA

Version 2 from Feb 20, 2018

- I. INDIVIDUAL INFORMATION
- 1. Name of individual
- 2. Position and affiliation
- 3. Primary job function
- 4. Role in frequent machine fine-tuning and part replacement/repair
- <u>Cell Number</u>
 Email (private & work)
- I. INSTITUTION INFORMATION
- Name of Institution/Hospital
- 8. Type of Institution
- 0 Talanhana Number (Institution)

Burying the Complexity:

Re-engineering for the Next Generation of Medical Linear Accelerators for Use in Challenging Environments

SURVEY OF

LINAC-BASED RADIOTHERAPY TREATMENT SYSTEM OPERATION IN AFRICA

Guidelines: This survey form has six sections: I, II, III, IV, V, VI and VII. Please complete all sections and questions as much as possible. Compulsory fields are marked with asterik (*). Leave blank the fields that do not apply to you. Your information will be kept strictly confidential. If you have questions or need assistance, please email admin@africsis.org

Results – Equipment Service

Service Consideration	Input
Linac per institution	1-2
Fine tuning frequency	Private (4-6), Public (1-2)
Part replacement/equip repair frequency	2
Fine tuning/repair entity	In-house, manufacturer, 3 rd party
Major challenges	Spare parts, power, tax, personnel, culture
Cost be linac (land, construction, equipment)	\$4-5M
Frequently replaced parts	Field light, motion control knob system on treatment couch, hand control, Electronic Card Motors of MLC
Failure by irradiation disabled per year	2-7
	Science & Technology Facilities Counc

Results – Operational Experience

Results – Expected Needs

How to improve machine stability:

- Preventing maintenance/service
- Cooling system
- Less digitization
- Dedicated stepdown transformer
- Back up generator
- Change over switch
- **G** Reliable and stable power supply
 - Training of locals

Need	Importance				
Machine stability	Most/More				
System operation	Most				
Operational cost	Most				
System efficiency	Most				
Multi-leaf collimators system ability to run with fluctuating power supply	More				
System robustness	More				
System modularity	More				
Maximum Photon Energy	More				
Capital cost	Most				
System performance	More				
Max electron energy	Not/Important				
Rotating gantry as opposed to fixed target or rotating patient	Important/more				

Design considerations for future linac

- Incorporate voltage stabilizers and UPS as integral parts of linac machine.
- Design TPS that can be powered with solar energy
- Add change over switch for generators as an integral part of the linac
- Add phase angle detector as an integral part of the linac
- A Minimize digitization of machine to improve tolerance to external shocks
- Add step down transformer to align with machine input as an integral part of the linac
- Lower procurement cost, machine stability, and system operation most important design considerations for future linac technology

RTT Technology: Initial Conclusions from Data – G Burt

- Across entire frequency range, klystrons deliver desired output power in single device:
 - Other devices can be put into specific frequency categories.
 - Based on number of devices required.
- Low frequency (< 1.3 GHz):
 - SSPAs.
 - Crossed Field Amplifiers.
- Between 2-4 GHz:
 - Magnetrons.
 - Klystrons.
- Above 4 GHz:
 - Klystrons.
 - Magnetrons
 - TWTs.
 - Crossed Field Amplifiers.

RF Source Examples Summary

			Crossed-Field	Solid State Power	Travelling Wave	Multiple-Beam
Device Type	Magnetron	Klystron	Amplifier	Amplifier	Tube	Klystron
Individual Unit Peak Output	_	_				
Power (MW)	5	5	0.5	0.1	0.2	6
Frequency (GHz)	2.86	2.86	9.75	0.4	5.5	2.998
Efficiency (%)	60	50	~50	No data	~25	60
Required RF power (MW)	3.9	3.9	2.68	10.4	2.8	3.88
Units Required for ~5 MW at 3 GHz	1	1	6	140	14	1
Total Volume (m³)	0.0103	0.2847	0.3	739	0.65	~0.2
Cooling	Forced air or water	Water	Forced air	Forced air	Water	Water
Magnet Required	Yes, electromagnet	Yes, PPM	Yes, electromagnet	No	Yes, PPM	Yes, PPM
Total Weight (kg) (incl. magnets)	58	150	150 (estimate)	21,000	1,850	95
Modulator Required	Yes	Yes	Yes	No	Yes	Yes

Science & Technology Facilities Council

Example Implementation

I. Syratchev, "Personal overview of special issues of the robust/reliable medical accelerator," CERN-ICEC-STFC Workshop on Innovative, Robust and Affordable Medical Linear Accelerators for Challenging Environments, 2017.

- Multiple MBKs driving multiple linacs:
 - Over-pressurised bunker to isolate RF sources.
- Control over RF sources:
 - Single klystron feeds single linac.
 - Single klystron feeds multiple linacs.
 - Achieved with mechanical switches.
- Extension in lifetime of RF source:
 - Not all devices active at all times.
 - Should minimize downtime if one source fails.

in the most economic way.

RTT Technology Options Study

Objective:

The theme of this activity is to:

- Assess a variety of different linac and RF source configuration options:
 - Technology developments in frequency ranges outside of the conventional 2.856 GHz provision.
 - Solid state, magnetron and klystron RF power delivery capabilities.
 - Advances in both Standing Wave and Travelling Wave linac performance.
- To define a new RTT system configuration which can not only outperform, but also offer a simpler, more efficient and robust system integration platform which can be more appropriately applied for ODA country exploitation.

Such an RT treatment systems must be able to operate:

- in less stable power delivery environments, with challenging temperature and humidity conditions,
- requiring an operational capability which is able to cope with such demanding specifications.

Discussion

RTT specification critical - single/multi energy, upgradability, size, stability, training ???

RTT Technology options study analysis process:

- RF Power Source
- RF Frequency
- Beam Energy
- Linac Solution
- Cost
- Accelerator Configuration:
 - Simplification
 - Ease of maintenance
 - Modularity
 - Robust operation in challenging environments

Need to ensure:

- ODA country implementation compatibility
- Consistency with other R&D activities
- ICEC validation is fundamental
- Have a clear understanding for next steps:
 - Funding, industrialisation, implementation, ongoing development and support?

