Measuring the mass, width, and couplings of semi-invisible resonances with the matrix element method

Prasanth Shyamsundar University of Florida

based on work done with (arXiv:1708.07641) Amalia Betancur Dr. Dipsikha Debnath Dr. James Gainer Dr. Konstantin Matchev

7 May, 2018

The problem

W could be a charged Higgs scalar or a new *W'* heavy guage boson. To find: M_W , M_ν , Γ_W , and the chirality of the couplings.

$$g^q = g_L^q P_L + g_R^q P_R \qquad \qquad g^l = g_L^l P_L + g_R^l P_R$$
 where $P_{L,R} = (1 \mp \gamma_5)/2$

$$\tan(\varphi_q) \equiv \frac{g_R^q}{g_L^q} \qquad \qquad \tan(\varphi_l) \equiv \frac{g_R^l}{g_L^l}$$

End point methods for mass measurements

The end point of the P_{lT} distribution is given by

Matrix Element Method

Likelihood of an event $\{P_j^{\mathrm{vis}}\}$ under a set of parameter values α

$$\mathcal{P}(\{P_{j}^{\text{vis}}\}|\alpha) = \frac{1}{\sigma_{\alpha}} \left(\prod_{j=1}^{N_{f}} \int \frac{d^{3}p_{j}}{(2\pi^{3}2E_{j})} \right) W(\{P_{j}^{\text{vis}}\}, \{p_{j}^{\text{vis}}\})$$
$$\times \sum_{a,b} \frac{f_{a}(x_{1})f_{b}(x_{2})}{2sx_{1}x_{2}} |\mathcal{M}_{\alpha}(\{p_{i}\}, \{p_{j}\})|^{2}$$
$$\times (2\pi)^{4} \delta^{4} \left(\sum_{i=1}^{2} p_{i} - \sum_{i=1}^{N_{f}+2} p_{j} \right)$$

Likelihood of set of N events

$$\mathcal{L}_{\alpha} = \prod_{n=1}^{N} \mathcal{P}(\{P_{j}^{\text{vis}}\}_{n} | \alpha)$$

"Mass difference" μ

Endpoint

$$\mu = \frac{M_W^2 - M_\nu^2}{2M_W}$$

Mass scale $M_{ m v}$

where $\rho = 2M_{\nu}^2/(M_W^2 - M_{\nu}^2)$

Width Γ_W

Flat direction

$$\frac{\Gamma_W}{\Gamma_W^{\rm true}} = \frac{1 + (M_{\nu}^{\rm true}/M_W^{\rm true})^2}{1 + (M_{\nu}/M_W)^2}$$

Masses and width using MEM

Negative log likelihood fit for masses and width (1000 events)

Including both P_{lT} and P_{lz} eliminates the flat direction

Chirality (φ_l, φ_q)

The dependence on (φ_l, φ_q) is through $\cos(2\varphi_l)\cos(2\varphi_q)$

Chirality (φ_l, φ_q)

1

Dependence of matrix element on chirality has a degeneracy. Matrix element depends on

$$\cos(2\varphi_l)\cos(2\varphi_q) = \cos^2(\varphi_l - \varphi_q) - \sin^2(\varphi_l + \varphi_q)$$

Negative log likelihood fit for 1000 events assuming values of other parameters. True value: $\varphi_q = \varphi_l = 0$

Extent to which different components of the visible momenta are _____affected by the parameters__

	,	
	$P_{\ell T}$	$P_{\ell z}$
mass difference	\checkmark	~
mass scale	~	\checkmark
width	~	~
chirality	Х	\checkmark

For 100 events produced at

 $M_W = 1000 \text{ GeV}, M_{\nu} = 500 \text{ GeV}, \Gamma_W = 50 \text{ GeV}, \varphi_q = \varphi_q = 45^{\circ},$ multivariate minimization of the log likelihood function yielded $M_W = 998 \text{ GeV}, M_{\nu} = 502 \text{ GeV}, \Gamma_W = 43 \text{ GeV}, \varphi_q = \varphi_q = 46.5^{\circ}$

Pair production of W like resonances

Log likelihood minimization with 500 events

Thank You!