FASER: ForwArd Search ExpeRiment at the LHC

work with Jonathan Feng, Iftah Galon and Sebastian Trojanowski

arXiv: 1708.09389, 1710.09387, 1801.08947

Felix Kling

Pheno 2018
May 8th 2018
Introduction

transverse region: high p_T
- mostly used for SM measurement
- typical rates $\sigma \sim \text{fb} - \text{pb}$

 $N_H = 10^7$ at 300fb$^{-1}$

forward region
- mostly used for SM measurement
- enormous event rates: $\sigma_{inel} \sim 75$ mb: $N_\pi = 10^{17}$ at 300fb$^{-1}$

 \Rightarrow extremely weakly-coupled **long-lived** particles may be produced sufficiently
- most particles have small $p_T \sim \Lambda_{QCD}$

 \Rightarrow energetic particles highly **collimated** $\theta \sim \Lambda_{QCD}/E \sim \text{mrad}$ for $E \sim \text{TeV}$

- we propose small ($\sim 1 \text{ m}^3$) inexpensive detector a few 100 m downstream

 \Rightarrow **FASER:** ForwArd Search ExpeRiment at the LHC
- LLP produced at ATLAS/CMS IP, collimated around beam axis

→ place FASER along beam axis after the LHC curves
FASER’s Location

- LLP produced at ATLAS/CMS IP, collimated around beam axis
 - Place FASER along beam axis after the LHC curves
- LHC infrastructure acts as natural filter in forward direction

Diagram Description

- **IP**: LLP produced at ATLAS/CMS interaction point
- **D&Q**: magnets deflect charged particles
- **TAN**: forward n,γ absorbed by Target Neutral Absorbers
- **Arc**: beam starts to curve at L=272m
FASER’s Location

- LLP produced at ATLAS/CMS IP, collimated around beam axis
 ➞ place FASER along beam axis after the LHC curves
- LHC infrastructure acts as natural filter in forward direction
- promising location: service tunnel TI-18
Felix Kling

FASER: ForwArd Search ExpeRiment at the LHC

Signal, Detector Design and Backgrounds

\[pp \rightarrow LLP + X, \quad LLP \text{ travels } \sim 480 \text{ m}, \quad LLP \rightarrow \text{charged tracks} + X \]

- **Features of the Signal:**
 - two oppositely charged energetic tracks: \(E > 500\) GeV
 - vertex inside detector volume
 - combined momentum points towards IP

- **Proposed Detector Design:**
 - FASER needs tracking, charge identification, rough energy estimate
 - tracking based technology, with magnet and calorimeter

- **Background considerations:**
 - rock + absorbers + magnets eliminate most BG
 - remaining BG mostly infrastructure induced:
 - collisions of beam halo with beam pipe near FASER + subsequent shower
 - have different kinematics: energy, direction, track multiplicity
 - scintillating veto layer
 - best estimated with experimental data (prototype)
 - ongoing detailed simulation by CERN accelerator section
New Physics Discovery Potential

Motivation
- dark matter solid evidence for new particles
- thermal freeze out:
 \[\Lambda_{DM} \sim \langle \sigma v \rangle^{-1} \sim m^2 / g^4 \]
- WIMP miracle:
 \[m \sim m_{\text{weak}}, \ g \sim g_{\text{weak}} \]
- broader WIMP:
 \[m < m_{\text{weak}}, \ g < g_{\text{weak}} \]
 \(\rightarrow \) light-weakly interacting new physics

Portals do Dark Sectors
- Dark Photon Portal: \(\epsilon F^\mu\nu F'^\mu\nu \)
- Dark Higgs Portal: \(\epsilon |H|^2 \phi^2 \)
- Neutrino Portal: \(yLHN \)
- Axion Portal: \(g\alpha F^\mu\nu \tilde{F}_{\mu\nu} \)
New Physics Discovery Potential

Dark Photon

\[\epsilon F^{\mu\nu} F'_{\mu\nu} \]

\[\pi^0, \eta \rightarrow \gamma A' \]

Bremsstrahlung

Dark Higgs

\[\epsilon |H|^2 \phi^2 \]

HNL

\[y LH N \]

\[B^+ \rightarrow \ell N, \ B \rightarrow D \ell N \]

\[D_s \rightarrow \ell N, \ D \rightarrow K \ell N \]
Summary and Outlook

Forward Physics
- large event rates
- energetic particles very forward $\theta < 1$ mrad
- search for light extremely weakly coupled particles

FASER
- cheap small size $\sim 1 \text{ m}^3$ detector, operates concurrently
- located in service tunnel TI-18
- signature: 2 energetic tracks with $E \sim \text{TeV}$
- equipped with tracking system, magnet, calorimeter
- Physics Examples: Dark Photon, Dark Higgs, ...

Current Developments & Next Steps
- detailed background simulation with FLUKA
- first background measurements in TI-18
- GEANT4 simulations & detector design
- explore more physics opportunities

We look forward to feedback and suggestions