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My Goal Today

It is possible to learn about

fundamental physics from the

observation of gravitational waves.
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The Cosmological Constant Problem

Today the cosmological constant is very small:

Λ ∼ (10−3 eV)4 � TeV4,M4
Pl.

There are still a lot of questions:

I Should we interpret it as vacuum energy of the underlying QFT?

I Why so small? Why not zero?

I Is it always small? Is there an adjustment mechanism?
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Testing the CC Picture

If the CC results from microphysics, we expect it to jump at every
phase transition:

∆Λ ∼ f 4
crit.

How to test phases of the SM different from the usual one?

NEUTRON STARS

I In the core there might be an unconventional QCD phase at low
temperature T and large chemical potential µ

I The VE is an O(1) fraction of the total energy

I Jump in VE vs adjustment mechanism
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FIG. 1 (Color online) A schematic outline for the phase dia-
gram of matter at ultra-high density and temperature. The
CFL phase is a superfluid (like cold nuclear matter) and has
broken chiral symmetry (like the hadronic phase).

cross-flavor pairing, and those stresses will become more
severe as the density (and hence µ̄) decreases. This will
be a major theme of later sections.

F. Overview of the quark matter phase diagram

Fig. 1 shows a schematic phase diagram for QCD that
is consistent with what is currently known. Along the
horizontal axis the temperature is zero, and the density
is zero up to the onset transition where it jumps to nu-
clear density, and then rises with increasing µ. Neutron
stars are in this region of the phase diagram, although
it is not known whether their cores are dense enough to
reach the quark matter phase. Along the vertical axis the
temperature rises, taking us through the crossover from
a hadronic gas to the quark-gluon plasma. This is the
regime explored by high-energy heavy-ion colliders.

At the highest densities we find the color-flavor locked
color-superconducting phase,2 in which the strange quark
participates symmetrically with the up and down quarks
in Cooper pairing. This is described in more detail in
Secs. II, IV, and V. It is not yet clear what happens
at intermediate density, and in Secs. III and VI we will

2 As explained in Sec. I.A, we fix Nf = 3 at all densities, to main-
tain relevance to neutron star interiors. Pairing with arbitrary
Nf has been studied (Schäfer, 2000a). For Nf a multiple of three
one finds multiple copies of the CFL pattern; for Nf = 4, 5 the
pattern is more complicated.

discuss the factors that disfavor the CFL phase at inter-
mediate densities, and survey the color superconducting
phases that have been hypothesized to occur there.

Various aspects of color superconductivity at high tem-
peratures have been studied, including the phase struc-
ture (see Sec. VI.A), spectral functions, pair-forming
and -breaking fluctuations, possible precursors to con-
densation such as pseudogaps, and various collective
phenomena (Abuki et al., 2002; Fukushima and Iida,
2005; Hatsuda et al., 2006; Kitazawa et al., 2002, 2004,
2005a,b, 2007; Voskresensky, 2004; Yamamoto et al.,
2007). However, this review centers on quark matter at
neutron star temperatures, and throughout Secs. II and
III we restrict ourselves to the phases of quark matter
at zero temperature. This is because most of the phases
that we discuss are expected to persist up to critical tem-
peratures that are well above the core temperature of a
typical neutron star, which drops below 1 MeV within
seconds of its birth before cooling down through the keV
range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next ques-
tion is who pairs with whom? In quark matter at suf-
ficiently high densities, where the up, down and strange
quarks can be treated on an equal footing and the disrup-
tive effects of the strange quark mass can be neglected,
the most symmetric and most attractive option is the
color-flavor locked phase, where quarks of all three colors
and all three flavors form conventional zero-momentum
spinless Cooper pairs. This pattern, anticipated in early
studies of alternative condensates for zero-density chi-
ral symmetry breaking (Srednicki and Susskind, 1981),
is encoded in the quark-quark self-energy (Alford et al.,
1999b)

⟨ψα
i Cγ5ψ

β
j ⟩ ∝ ∆CFL(κ+1)δα

i δ
β
j + ∆CFL(κ−1)δα

j δ
β
i

= ∆CFLϵ
αβAϵijA + ∆CFLκ(δ

α
i δ

β
j + δα

j δ
β
i )

(5)
The symmetry breaking pattern is

[SU(3)c] × U(1)B

× SU(3)L × SU(3)R︸ ︷︷ ︸
⊃ [U(1)Q]

→ SU(3)c+L+R︸ ︷︷ ︸
⊃ [U(1)Q̃]

× Z2 (6)

Color indices α,β and flavor indices i, j run from 1 to 3,
Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square
brackets. ∆CFL is the CFL gap parameter. The Dirac
structure Cγ5 is a Lorentz singlet, and corresponds to
parity-even spin-singlet pairing, so it is antisymmetric in
the Dirac indices. The two quarks in the Cooper pair are
identical fermions, so the remaining color+flavor struc-

M. G. Alford, A. Schmitt, K. Rajagopal, T. Schäfer, “Color Superconductivity in Dense
Quark Matter”, Rev. Mod. Phys. 80, 1455 (2008) [arXiv:0709.4635 [hep-ph]].
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Dissecting Neutron Stars

E. Gibney, “Neutron Stars Set to Open Their Heavy Hearts”, Nature 546, 18 (2017).
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Equation of State

The internal structure of neutron stars is very complicated:

I Hard to obtain the EoS from first principles, i.e. QCD

I Piecewise polytropic parametrization with 7 layers

I After imposing continuity there are 16 free parameters

For the outer 6 layers,

p = Kiρ
γi , pi−1 ≤ p ≤ pi.

The energy density enters the Einstein equations and can be
calculated from the first law of thermodynamics:

ε = (1 + ai)ρ+
Ki

γi − 1
ργi , ρi−1 ≤ ρ ≤ ρi.
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Effects of Vacuum Energy in the Core

Let’s assume that the core is in a different phase of QCD.
By definition we introduce a vacuum energy contribution as

p = K7ρ
γ7 − Λ,

ε = (1 + a7)ρ+
K7

γ7 − 1
ργ7 + Λ.

Notice that:

I We assume the phase transition to be first order: mass and
energy density have to jump from ρ− to ρ+ and from ε− to ε+

I We parametrize the phase transition as ε+ − ε− = α|Λ|
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GW170817
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Spherically Symmetric Solution

With a spherically symmetric metric ansatz, the Einstein equations
become the TOV equations:

m′(r) = 4πr2ε(r),

p′(r) = − p(r) + ε(r)

r(r − 2Gm(r))
G
[
m(r) + 4πr3p(r)

]
,

ν ′(r) = − 2p′(r)

p(r) + ε(r)
.

These provide the unperturbed solutions for the stars.
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M(R) Curves: Hebeler et al. EoS
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I We obtain each curve by varying the central pressure of the star

I For a high enough pressure the core is in the exotic phase

I The neutron star solution must be stable: ∂M/∂pcenter ≥ 0

I For some positive Λ we obtain disconnected branches
characteristic of phase transitions
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Tidal Deformability

The presence of the second neutron star acts as an external
perturbation. The combined dimensionless tidal deformability is

Λ̃ ≡ Λ̃(M1,M2,EoS1,EoS2).

This quantity:

I Describes how the stars deform

I Is determined by the internal structure, i.e. by the EoS

I Shows up in the expansion of the gravitational waveform

I Is one of the main physical observables of LIGO/Virgo
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Money Plot
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I Hebeler et al. parametrization with the chirp mass of GW170817

I VE can significantly alter the allowed mass range

I It should be taken into account when comparing EoSs
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Conclusions

I Vacuum energy is an important part of our standard picture of
cosmology and particle physics, yet it is not very well understood

I It can contribute to the equation of state of neutron stars if the
core contains a new phase of QCD at large densities

I This significantly affects the mass versus radius curves and
LIGO/Virgo observables such as tidal deformabilities

I As the sensitivities of the experiments evolve and more events
are observed, neutron star mergers can provide a new test of the
gravitational properties of vacuum energy
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Thank you!
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