Lightening Top Partner at the LHC

Haider Alhazmi University of Kansas based on work in collaboration with J. Kim, K. Kong and I. Lewis May, 7th 2018

The Stability of Higgs mass. Naturalness. Interaction with SM top-quark.

- Supersymetry: New Scalar.
- Composite Higgs: New Fermion.

Assume Vector Like Quark.

Simple Extension to SM with a VLQ: TConventionally: $T \rightarrow tZ, tH, bW$ <u>Exp. searches indicate no</u> <u>deviation from the SM.</u>

What if T doesn't decay conventionally? How about new decay modes? Radiative decay Modes?

Can we probe this at the LHC?

- Simple Extension to SM with a VLQ: TConventionally: $T \rightarrow tZ, tH, bW$ <u>Exp. searches indicate no</u>
- deviation from the SM.
- What if T doesn't decay conventionally? How about new decay modes? Radiative decay Modes?
- Can we probe this at the LHC?

- Simple Extension to SM with a VLQ: T Conventionally: $T \rightarrow tZ, tH, bW$
- Exp. searches indicate no
- deviation from the SM.
- What if T doesn't decay conventionally? How about new decay modes? Radiative decay Modes?
- Can we probe this at the LHC?

Loop Induced Single Top Partner Production and Decay at the LHC

Jeong Han Kim^a Ian M. Lewis^a

arXiv:1803.06351

Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas, 66045 USA

Recent theoretical work -----> Complete ultraviolet model

Considers zero mixing angle between SM top and t-prime Radiative decays are induced by loop processes

Simple Extension to SM: SU(3) color triplet and SU(2) Singlet. Production is fixed by QCD, $\mathcal{L}_{\text{Kinetic}}$. Effective Lagrangian:

 $\mathcal{L}_{\rm EFT} = \bar{T} \,\sigma^{\mu\nu} \,\left(\mathcal{C}_1 T^a P_{L/R} \,t \,G^a_{\mu\nu} + \mathcal{C}_2 P_{L/R} \,t \,F_{\mu\nu} \right) + h.c.$

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{Kinetic}} + \mathcal{L}_{\mathrm{EFT}}.$

Final States

 $pp
ightarrow ttgg \, / \, ttg\gamma$

Benchmark Point:

 $C_1 = 1.0 \times 10^{-4}$ $C_2 = 0.2 \times 10^{-4}$ $m_T = 1.0 \text{ TeV}$ **Branching Fractions:**

 $BR(T \to tg) = 0.97$

 $BR(T \to t\gamma) = 0.03$

consider semileptonic decay

Semileptonic $t \rightarrow bjj \& t \rightarrow b\bar{l}\nu_l$

1. $t\bar{t}gg$ Final State

2. $t\bar{t}g\gamma$ Final State

- $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{Kinetic}} + \mathcal{L}_{\mathrm{EFT}}.$
- Model implementation.
- Signal and Background generation.
- Anti-kT jet clustering.
- TOM for top tagging.
- Detector resolution effect is included (ATLAS parametrization).

- All partons: $p_T > 30 \,\text{GeV}$ and $|\eta| < 5$
- Leptons: $p_T^l > 30 \, {
 m GeV}$ and $\left| \eta^l \right| < 2.5$
- + Photons: $p_T^{\gamma} > 300 \, {
 m GeV}$ and $|\eta^{\gamma}| < 2.5$

• Additionally: $H_T > 700 \,\mathrm{GeV}$

1. Semileptonic

 $p \, p \to T \, \bar{T} \to t \, g \, \bar{t} \, g$

Consider

2. at 13 TeV (background)

CMS Collaboration arXiv:1311.5357

CMS Collaboration arXiv:1711.10949

$tar{t}gg$ Final State

Abbreviations	Backgrounds	Matching	$\sigma \cdot \mathrm{BR} \cdot \varepsilon_{\mathrm{gen}}$
$t\bar{t}$	$t\bar{t} + jets$	4-flavor	$2.9 \times 10^3 \text{ fb}$
Single t	tW + jets	5-flavor	$4.1 \times 10^3 \text{ fb}$
single <i>i</i>	t + jets	4-flavor	$77 \ \mathrm{fb}$
W	W + jets	5-flavor	$5.0 \times 10^3 \text{ fb}$
UV	WW + jets	4-flavor	110 fb
	WZ + jets	4-flavor	44 fb

2. Boosted top tagging: { select one fat jet with the best overlap score }

- 4. Isolated slim jets: { at leas 3 jets are isolated from the fat jet }
- 5. b-quark from t-leptonic: { $m_{lj} < m_{lb}^{max}$ } \longrightarrow {jet}^b
- 6. Boosted top tagging: { \$\nother _T+l+{jet}^b\$, find the combination with the best overlap results }
 7. Realization of g jets: { two highest jets in \$p_T\$}

1. Semileptonic $p p \to T \overline{T} \to t q \overline{t} q$

 $p_T^{g_1}$: The first hardest gluon jet.

 $p_T^{g_2}$: The second hardest gluon jet.

1. Semileptonic $p p \to T \overline{T} \to t q \overline{t} q$

mass difference $: \Delta m$

1. Semileptonic $p p \to T \overline{T} \to t g \overline{t} g$

Cut-flow table of tgtg final state

Log likelihood ratio

 $H_T^{reco} = p_T^{t_h} + p_T^{t_l} + p_T^{g_1} + p_T^{g_2}$

cross section in fb

		Signal	tt	t	W	VV (Significance	Exclusion
	Basic Cuts	3.0	1100	2600	2100	68	2.14	2.14
	<i>t</i> -tagging	0.59	142.8	63.19	32.19	1.83	2.12	2.12
	$p_T^{\{g_1,g_2\}} > \{250, 150\} \text{ GeV}$	0.35	9.17	4.63	2.48	0.19	4.78	4.76
	$H_{T_{-}}^{reco} > 1600 \text{ GeV}$	0.29	4.86	3.42	1.58	0.12	5.05	5.03
	$750 < M_T < 1100 \text{ GeV}$	0.16	0.84	0.62	0.23	0.017	$\bigcirc 6.73 \bigcirc$	6.63
	b -tag on $t_{\rm had}$	0.10	0.51	0.29	$5.6 imes 10^{-3}$	$1.0 imes 10^{-3}$	5.90	5.78
	b -tag on t_{lep}	0.10	0.49	0.21	0.016	$1.7 imes 10^{-4}$	6.40	6.26
	<i>b</i> -tag on $t_{\text{had}} \& t_{\text{lep}}$	0.061	0.30	0.084	5.1×10^{-4}	$1.0 imes 10^{-5}$	5.28	5.15

$$BR(T \to tg) = 0.97$$

Luminosity = 3 ab^{-1}

2. Semileptonic $p p \to T \overline{T} \to t q \overline{t} \gamma$

Consider

 $m_T = 1 \,\mathrm{TeV} \Longrightarrow \sigma^{\mathrm{sig}} \cdot \mathrm{BR} \cdot \varepsilon_{\mathrm{gen}} = 0.22 \,\mathrm{fb}$

Abbreviations	Backgrounds	Matching	$\sigma \cdot \mathrm{BR} \cdot \varepsilon_{\mathrm{gen}}$
$t\bar{t}\gamma$	$t\bar{t} + \gamma + jets$	4-flavor	$1.0 \; \mathrm{fb}$
to	$tW + \gamma + jets$	5-flavor	1.9 fb
υy	$t + \gamma + \text{jets}$	4-flavor	$0.085~{\rm fb}$
$W\gamma$	$W + \gamma + \text{jets}$	5-flavor	5.4 fb
VVa	$WW + \gamma + jets$	4-flavor	0.17 fb
ννγ	$WZ + \gamma + jets$	4-flavor	$0.057~{ m fb}$

Photon Fake Rate

$$\epsilon_{j \to \gamma} = \begin{cases} 5.3 \times 10^{-4} \exp\left(-6.5 \left(\frac{p_{T,j}}{60.4 \text{GeV}} - 1\right)^2\right) & \text{for } p_{T,j} < 65 \,\text{GeV}, \\ 0.88 \times 10^{-4} \left[\exp\left(-\frac{p_{T,j}}{943 \text{GeV}}\right) + \frac{248 \text{GeV}}{p_{T,j}}\right] & \text{otherwise}, \end{cases}$$

Goncalves, Han, Kling, Plehn, Takeuchi, (arXiv:1802.04319)

Results

16

Conclusion $p p \to T \overline{T} \to t g \overline{t} g$ and $p p \to T \overline{T} \to t g \overline{t} \gamma$

- Radiative decay modes serve as a complementary search to the conventional decay modes.
- Radiative decay modes become extremely important when Exp limits are stronger on the conventional decay modes.
- Despite its small BR, photon final state provides better significance and allow exploration of larger part of the parameter space.
- Combining the two final states helps increase the sensitivity.

Questions

Thank You