Single Top-quark production cross-section measurements using the ATLAS detector at the LHC

Javier Jiménez Peña IFIC (CSIC-UV) on behalf of the ATLAS Collaboration

OCHOA

Single top-quark production.

- Top-quark properties.
 - Heaviest particle in the SM.
 - Direct access to bare quark properties.
 - Top-quark decays almost exclusively to $t \rightarrow Wb$.

- Why (single) top-quark production is important?
 - Test of SM:
 - Can constrain PDFs.
 - > Test CKM matrix unitarity.
 - > Test pQCD calculations.
 - Probe BSM physics:
 - > Anomalous couplings with Wtb vertex.

7–9 May

 $\sigma(8 \text{ TeV}) = 87.7^{+3.4}_{-1.9} \text{pb} \quad \sigma(8 \text{ TeV}) = 22.4 \pm 1.5 \text{pb} \quad \sigma(8 \text{ TeV}) = 5.6 \pm 0.2 \text{pb}$ $\sigma(13 \text{ TeV}) = 217.0^{+9.1}_{-7.7} \text{pb} \quad \sigma(13 \text{ TeV}) = 71.7 \pm 3.8 \text{pb} \quad \sigma(13 \text{ TeV}) = 10.3 \pm 0.4 \text{pb}$

s-channel @ 8TeV: total measurement.

PLB 756 (2016), 228-246

- Signal signature (leptonic decay of W boson).
 - 1 isolated lepton.
 - E_T^{MISS} from the neutrino.
 - 2 high P_T*b*-tagged jets.
- Main backgrounds:
 - ttbar (dilepton veto to reduce it), W+jets.
- Matrix Element method to separate tb signal

$$\sigma_{tot}(s-channel) = 4.8 \pm 0.8(stat.)^{+1.6}_{-1.3}(syst.)pb$$

observed(expected)significance: $3.2 \sigma(3.9 \sigma)$

• Binned likelihood fit to extract the cross section in signal region. W+jets CR used in the fit.

t-channel.

- Separate measurements of $\sigma(tq)$ and $\sigma(\bar{tq})$.
- Signal signature (leptonic decay of W boson).
 - 1 isolated lepton.
 - E_{T}^{MISS} from the neutrino
 - High P_T forward (spectator) jet.
 - High P_T b-tagged jet.
- Main backgrounds:
 - ttbar, W+jets.
 - E_T^{MISS} used to supress multijet contributions

8 TeV / 13 TeV	1j	2j	3j
0b			
1b(loose)		VR (W+jets)	
1b		SR (1 ⁺) SR (1 ⁻)	
2b		VR (ttbar)	

Neural network to separate signal and background.

• Fiducial phase space measurement.

- Reduces systematic uncertainties related with MC generators.
- Region defined by stables particles with selection close to reconstructed objects.
- Neural network (NN):
 - 7 input variables combined into the NN discriminant.

Improves sensitivity of the signal extraction.

• Fiducial phase space volume.

Eur. Phys. J. C 77 (2017) 531

$$\sigma_{\rm fid} = \frac{N_{\rm fid}}{N_{\rm sel}} \cdot \frac{\hat{\nu}}{L_{\rm int}}$$

Main systematics:

- jet energy scale (2.5%)
- NLO matching (4.6 %)
- lepton reconstruction (2.5 %).

Pheno 2018. Pittsburgh

t-channel @ 8 TeV and 13 TeV: total measurement.

Eur. Phys. J. C 77 (2017) 531 JHEP04(2017)086

$$\sigma_{tot}(\bar{t} q) = 32.9^{+3.0}_{-2.7} \text{ pb}(9.1\%) \qquad \textbf{8 TeV}$$

$$\sigma_{tot}(tq) = 56.7^{+4.3}_{-3.8} \text{ pb}(7.6\%)$$

$$|f_{LV} \cdot V_{tb}| = 1.029 \pm 0.048(4.6\%)$$

Extrapolation to total phase space.

> $\sigma_{\rm tot} = \frac{1}{A_{\rm fid}} \cdot \sigma_{\rm fid}$ $R_t = \sigma_{tot}(tq) / \sigma_{tot}(\bar{t}q)$

• $|V_{tb}|$ without assuming unitarity from the inclusive cross section σ (tq+tq).

$$|f_{LV} \cdot V_{tb}|^2 = \sigma_{meas} / \sigma_{SM}$$

$$\sigma_{tot}(\bar{t} q) = 91 \pm 19 \text{ pb}(20.4\%) \qquad 13 \text{ TeV}$$

$$\sigma_{tot}(tq) = 156 \pm 28 \text{ pb}(17.8\%)$$

$$|f_{LV} \cdot V_{tb}| = 1.07 \pm 0.09(8.4\%)$$

dominant syst: MC generators (tg parton shower)

Eur. Phys. J. C 77 (2017) 531

t-channel @ 8 TeV: differential measurement.

- Differential measurement.
 - Cut in Neural Network output to enhance signal-background ratio. O_{NN}>0.8.
 - A different NN for the |y(t)| measurement to reduce distortion of the distribution.
 - Unfolded distributions at particle level.
 - > $P_{T}(t), P_{T}(jet)$ in two SR's (top and antitop).
 - ▷ |y(t)|, |y(jet)| in two SR's (top and antitop).
 - Unfolded distributions at parton level.
 - > $P_{T}(t)$ in two SR's (top and antitop).
 - y(t) in two SR's (top and antitop).
- **Background normalization:** theoretical predictions. Multijet determined w. data driven technique.
- Main systematics: jet enegy scale, modelling signal and ttbar.

tW-channel.

- Signal signature (leptonic decay of W boson).
 - 2 isolated leptons (oppositely charged).
 - E_{T}^{MISS} from the two neutrinos.
 - High P_T b-tagged jet.
- Main backgrounds:
 - ttbar (interference at NLO).
 - E_T^{MISS} and dilepton invariant mass used to suppress Z+jets contributions.

• Boosted Decision Tree to separate ttbar from tW.

Pheno 2018. Pittsburgh

tW-channel @ 8TeV and 13 TeV: total measurement.

JHEP 01 (2018) 63

JHEP01(2016)064

13 TeV

• 2 separate **BDT's**. Same strategy than **8 TeV**.

Cross-section extracted from a **profile likelihood fit** to the **BDTs**. Two jet regions help to constrain **ttbar**

Main systematics:

- jet reconstruction (10%)
- initial/final state radiation (9.5%) ٠
- ttbar normalisation (6%).

Pheno 2018. Pittsburgh

- jet energy scale (21%)
- NLO matrix element (18%). •

8 TeV

3 separate **BDT's** trained to separate **tW** from **ttbar**.

- **tW differential** analysis using **36.1 fb**⁻¹ of 2015+2016 data.
- Differential measurement: fiducial phase space defined with two charged leptons and one b-jet.
- Signal region: exactly one b-jet, no additional jets.
- Validation regions defined to validate the modelling. Not used in the cross-section measurement.

To further suppress **ttbar** a **BDT** is used

Background subtraction: theoretical predictions

Process	Events	Events BDT response > 0.3	
tW $t\bar{t}$ Z + jets Diboson Fakes	$8\ 300 \pm 1\ 400 \\38\ 400 \pm 6\ 600 \\620 \pm \ 310 \\230 \pm \ 58 \\220 \pm \ 220$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Predicted Observed	47800 ± 7300 45273	$5\ 600\pm 1\ 700$ $5\ 043$	

7–9 May

۶

Eur. Phys. J. C 78 (2018) 186

tW-channel @ 13 TeV: differential measurement.

- Unfolded distributions at particle level:
- Differential cross-section extracted as function of several particle-level observables:
 - $E(b) \rightarrow top quark production.$
 - $m(I_1b); m(I_2b) \rightarrow top quark decay.$
 - E(IIb); $\mathbf{m}_{\mathsf{T}}(\mathsf{IIvvb})$; $\mathbf{m}(\mathsf{IIb}) \rightarrow \mathsf{combined} \mathsf{tW} \mathsf{system}$.

Measurements are normalised wit the fiducial cross-section. Cancellation of main uncertainties.

Main uncetainties:

- Limited data statistics
- Signal modelling
- ttbar modelling.

PLB 780 (2018), 557-577

- First evidence of SM tZq electroweak process.
 - Sensitive to tZ and WWZ coupling.
 - Important background to tH and tZ FCNC production.
- Trilepton decay channel is used. Signal signature:
 3 charged leptons, a *b*-jet and an additional non-*b*-jet.
- Main backgrounds:
 - Diboson, ttbar, Z+jets: Two VR and two CR

- Background normalization:
 - SF for **Diboson** from its control-region. Mostly WZ. ZZ with a non detected lepton is 9%
 - **ttbar** control region constrains nonpromt leptons
 - **Z+jets** estimated w. data driven technique.

tZq measurement @ 13 TeV.

- Neural network is used to enhace S/B.
 - > 10 variables used as input: $\eta(j)$, $P_{T}(j)$, m(t), ...
- Binned maximum likelihood fit to extract the cross section using the full NN discriminant distribution.
- Impact of systematic uncertainties as nuisance parameters of the fit.

 $\sigma(tZq) = 600 \pm 170(stat.) \pm 140(syst.) \, fb$

observed (expected) significance : $4.2 \sigma(5.4 \sigma)$

$$\sigma_{\text{theo}}(tZq) = 800^{+49}_{-59} \text{fb}$$

PLB 780 (2018), 557-577

Events / 0.1

Data/Pred.

Summary

- ATLAS has studied comprehensively single-top-quark production at 8 TeV.
- Measurements are within uncertainties in agreement with theoretical predictions.
- First measurements at 13 TeV are coming out using 2015 and 2015+2016 data.
- New couplings can be accessed with 13 TeV luminosity (evidence for tZq!)
- Analyses will profit from full Run II dataset.

Backup

Introduction

	8 TeV	13 TeV
t-channel	Eur. Phys. J. C 77 (2017) 531	JHEP04(2017)086
tW-channel	JHEP01(2016)064	JHEP 01 (2018) 63 Eur. Phys. J. C 78 (2018) 186
s-channel	PLB 756 (2016), 228-246	-
tZq	-	PLB 780 (2018), 557-577

Backup: Particle vs Parton level

• Parton level.

- Before particles decay.
- Measurement can be extrapolated to full phase space.
- Compare the results with available theoretical predictions (not available at particle level).

Backup: Particle vs Parton level

- Fiducial cuts on the objects similar to the reconstructed ones is able to:
 - Reduce modelling uncertainties.
 - Reduce dependencies from the generators.

Backup: t-channel uncertainties @ 8 TeV

Source	$\frac{\Delta \sigma_{\rm fid}(tq) / \sigma_{\rm fid}(tq)}{[\%]}$	$\frac{\Delta \sigma_{\rm fid}(\bar{t}q) / \sigma_{\rm fid}(\bar{t}q)}{[\%]}$
Data statistics	± 1.7	± 2.5
Monte Carlo statistics	± 1.0	± 1.4
Background normalisation	< 0.5	< 0.5
Background modelling	± 1.0	± 1.6
Lepton reconstruction	± 2.1	± 2.5
Jet reconstruction	± 1.2	± 1.5
Jet energy scale	± 3.1	± 3.6
Flavour tagging	± 1.5	± 1.8
$E_{\rm T}^{\rm miss}$ modelling	± 1.1	± 1.6
b/b tagging efficiency	± 0.9	± 0.9
PDF	± 1.3	± 2.2
tq ($\bar{t}q$) NLO matching	± 0.5	< 0.5
tq ($\bar{t}q$) parton shower	± 1.1	± 0.8
tq ($\bar{t}q$) scale variations	± 2.0	± 1.7
tī NLO matching	± 2.1	± 4.3
tt parton shower	± 0.8	± 2.5
tī scale variations	< 0.5	< 0.5
Luminosity	± 1.9	± 1.9
Total systematic	± 5.6	± 7.3
Total (stat. + syst.)	± 5.8	± 7.8

Source	$\Delta R_t/R_t \ [\%]$
Data statistics	± 3.0
Monte Carlo statistics	± 1.8
Background modelling	± 0.7
Jet reconstruction	± 0.5
$E_{\rm T}^{\rm miss}$ modelling	± 0.6
tq ($\bar{t}q$) NLO matching	± 0.5
tq ($\bar{t}q$) scale variations	± 0.7
tī NLO matching	± 2.3
tt parton shower	± 1.7
PDF	± 0.7
Total systematic	± 3.9
Total (stat. + syst.)	± 5.0

ABM Rt is 2.5 above ATLAS measurement. ABM PDF set differs from others sets in the treatment of the *b*-quark PDF and the value of alpha_s.

Backup: t-channel uncertainties @ 13 TeV

Source	$rac{\Delta\sigma(tq)}{\sigma(tq)}$ [%]	$\frac{\Delta\sigma(\tilde{i}q)}{\sigma(\tilde{i}q)}[\%]$	$\frac{\Delta R_t}{R_t} [\%]$
Data statistics	± 2.9	± 4.1	± 5.0
Monte Carlo statistics	± 2.8	± 4.2	± 5.1
Reconstruction efficiency a	nd calibration	uncertainties	
Muon uncertainties	± 0.8	± 0.9	± 1.0
Electron uncertainties	< 0.5	± 0.5	± 0.7
JES	± 3.4	± 4.1	± 1.2
Jet energy resolution	± 3.9	± 3.1	± 1.1
$E_{\rm T}^{\rm miss}$ modelling	± 0.9	± 1.2	< 0.5
b-tagging efficiency	± 7.0	± 6.9	< 0.5
c-tagging efficiency	< 0.5	± 0.5	± 0.6
Light-jet tagging efficiency	< 0.5	< 0.5	< 0.5
Pile-up reweighting	± 1.5	± 2.2	± 3.8
Monte Cark	o generators		
tq parton shower generator	± 13.0	± 14.3	± 1.9
tq NLO matching	± 2.1	± 0.7	± 2.8
tq radiation	± 3.7	± 3.4	± 3.7
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ parton shower generator	± 3.2	± 4.4	± 1.2
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ NLO matching	± 4.4	± 8.6	± 4.6
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ radiation	< 0.5	± 1.1	± 0.7
PDF	± 0.6	± 0.9	< 0.5
Background	normalisation		
Multijet normalisation	± 0.3	± 2.0	± 1.8
Other background normalisation	± 0.4	± 0.5	< 0.5
Luminosity	± 2.1	± 2.1	< 0.5
Total systematic uncertainty	± 17.5	± 20.0	± 10.2
Total uncertainty	± 17.8	± 20.4	± 11.4

8 TeV input variables

Variable symbol	Definition
m(jb)	The invariant mass of the untagged jet (j) and the <i>b</i> -tagged jet (b) .
$ \eta(j) $	The absolute value of the pseudorapidity of the untagged jet.
m(lvb)	The invariant mass of the reconstructed top quark.
$m_{\rm T}(\ell E_{\rm T}^{\rm miss})$	The transverse mass of the lepton- E_T^{miss} system, as defined in Eq. (2).
$ \Delta \eta(\ell v, b) $	The absolute value of $\Delta \eta$ between the reconstructed W boson and the <i>b</i> -tagged jet.
$m(\ell b)$	The invariant mass of the charged lepton (ℓ) and the <i>b</i> -tagged jet.
$\cos\theta^*(\ell, j)$	The cosine of the angle, θ^* , between the charged lepton and the untagged
623	jet in the rest frame of the reconstructed top quark.

13 TeV input variables

Variable	Definition
$m(\ell vb)$	top-quark mass reconstructed from the charged lepton,
	neutrino, and b-tagged jet
m(jb)	invariant mass of the b-tagged and untagged jet
$m_{\rm T}(\ell E_{\rm T}^{\rm miss})$	transverse mass of the reconstructed W boson
$ \eta(j) $	modulus of the pseudorapidity of the untagged jet
$m(\ell b)$	invariant mass of the charged lepton (ℓ) and the <i>b</i> -tagged jet
$\eta(\ell \nu)$	rapidity of the reconstructed W boson
$\Delta R(\ell v b, j)$	ΔR of the reconstructed top quark and the untagged jet
$\cos \theta^*(\ell, j)$	cosine of the angle θ^* between the charged lepton and the untagged jet
	in the rest frame of the reconstructed top quark
$\Delta p_{\rm T}(\ell v b, j)$	$\Delta p_{\rm T}$ of the reconstructed top quark and the untagged jet
$\Delta R(\ell, j)$	ΔR of the charged lepton and the untagged jet

Pheno 2018. Pittsburgh

Backup: t-channel differential measurement @ 8 TeV.

Cross sections at particle level (only top shown).

Pheno 2018. Pittsburgh

Backup: t-channel differential measurement @ 8 TeV.

Cross sections at parton level (only top shown).

Backup: tW-channel fit impact comparison on uncertainties

			Source	$\Delta \sigma_{Wt} / \sigma_{Wt} [\%]$
	At least one jet with $p_{\rm T} > 25$ G	GeV, $ \eta < 2.5$	Jet energy scale	21
Exactly	two leptons of opposite charge	we with $p_{\rm T} > 20 {\rm GeV}$.	Jet energy resolution	8.6
Jul - 25 6			$E_{\rm T}^{\rm miss}$ soft terms	5.3
$ \eta < 2.5$ for muc	ons and $ \eta < 2.47$ excluding	$1.57 < \eta < 1.52$ for electrons	<i>b</i> -tagging	4.3
At least one lept	on with $p_{\rm T} > 25 {\rm GeV}$, veto if	third lepton with $p_{\rm T} > 20 {\rm GeV}$	Luminosity	2.3
At	least one lepton matched to the	ne trigger object	Lepton efficiency, energy scale and resolution	1.3
	$E_{\pi}^{\text{miss}} > 50 \text{GeV},$	if $m_{\ell\ell} < 80 \text{GeV}$	NLO matrix element generator	18
Different flavour	$E^{\text{miss}} > 20 \text{ GeV}$ if $m_{\text{cov}} > 80 \text{ GeV}$	$if_{\rm max} > 80 {\rm GeV}$	Parton shower and hadronisation	7.1
	$L_{\rm T} > 20 {\rm GeV},$	$E_{\rm T} > 20 {\rm GeV}, \qquad {\rm If } m_{\ell\ell} > 80 {\rm GeV}$	Initial-/final-state radiation	6.4
	$E_{\rm T}^{\rm miss} > 40 {\rm GeV},$	always	Diagram removal/subtraction	5.3
	1 Vato	if $m_{ee} < 40 \text{ GeV}$	Parton distribution function	2.7
Same flavour	4 Emiss > 5 mar	$\inf_{\ell \in \mathcal{O}} A(\mathcal{O}) \leq \max_{\ell \in \mathcal{O}} \leq \Re (\mathcal{O})$	Non-tf background normalisation	3.7
Same navour	$4L_{\rm T} > 5m_{\ell\ell},$	$m_{\ell\ell}$, If 40 GeV < $m_{\ell\ell}$ < 81 GeV	Total systematic uncertainty	30
	$2m_{\ell\ell} + E_{\rm T}^{\rm miss} > 300 {\rm GeV}, \qquad \text{if } m_{\ell\ell} > 101 {\rm GeV}$	Data statistics	10	
		Total uncertainty	31	

Backup: tW-channel BDT discriminating power @ 13 TeV.

1j1b		
Variable	<i>S</i> [10 ⁻²]	
$p_{\rm T}^{\rm sys}(\ell_1\ell_2E_{\rm T}^{\rm miss}j_1)$	5.3	
$\Delta p_{\mathrm{T}}(\ell_1 \ell_2, E_{\mathrm{T}}^{\mathrm{miss}} j_1)$	2.9	
$\sum E_{T}$	2.7	
$\Delta p_{\mathrm{T}}(\ell_1 \ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	1.2	
$p_{\rm T}^{\rm sys}(\ell_1 E_{\rm T}^{\rm miss} j_1)$	0.9	
$C(\ell_1\ell_2)$	0.9	
$\Delta p_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$	0.8	
BDT discriminant	8.6	

2j1b		
Variable	<i>S</i> [10 ⁻²]	
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1\ell_2)$	1.7	
$\Delta R(\ell_1 \ell_2, E_{\rm T}^{\rm miss} j_1 j_2)$	1.7	
$\Delta R(\ell_1 \ell_2, j_1 j_2)$	1.5	
$m(\ell_1 j_2)$	1.4	
$\Delta p_{\rm T}(\ell_1 \ell_2, E_{\rm T}^{\rm miss})$	1.4	
$\Delta p_{\mathrm{T}}(\ell_1, j_1)$	1.4	
$m(\ell_1 j_1)$	1.3	
$p_{\mathrm{T}}(\ell_1)$	1.3	
$\sigma(p_{\rm T}^{\rm sys})(\ell_1\ell_2E_{\rm T}^{\rm miss}j_1)$	1.2	
$\Delta R(\ell_1, j_1)$	1.2	
$p_{\mathrm{T}}(j_2)$	0.9	
$\sigma(p_{\rm T}^{\rm sys})(\ell_1\ell_2E_{\rm T}^{\rm miss}j_1j_2)$	0.9	
$m(\ell_2 j_1 j_2)$	0.3	
$m(\ell_2 j_1)$	0.3	
$m(\ell_2 j_2)$	0.1	
BDT discriminant	10.9	

Ρ	heno	2018.	Pitts	bura

Backup: tW-channel differential measurement @13 TeV.

Backup: tW-channel differential measurement @13 TeV.

ATLAS	√s =	= 8 TeV,	20.3 fb ⁻¹			
Measured fiducial V	Vt+tť cross-se	ection				
📕 Total uncertainty						
Stat. uncertainty						
Predicted fiducial	cross-sectio	ns:				
POWHEG-BOX+PYT σ ^{wt} at NLO+NNLL, σ ^{rf} at	HA DR CT10 NNLO+NNLL				•	-IS
POWHEG-BOX+PYTI σ [™] and σ ^{if} at NLO	HIA DR CT10	۲				
POWHEG-BOX+PYTI σ [™] and σ ^{it} at NLO	HIA DS CT10	۲	-			
POWHEG-BOX+HER σ [™] and σ ^{it} at NLO	WIG DR CT10)	•	1		
MC@NLO+HERWIG o [™] and o ^{nt} at NLO	DR CT10		H	•		
MC@NLO+HERWIG σ [™] and σ ^{ti} at NLO	DR MSTW2	800	l	-	Ě.	
MC@NLO+HERWIG	DR NNPDF	2.3	H		-	
.3 0.4	0.5 (0.6	0.7	0.8	0.9	-

Uncertainty	Impact on $\hat{\mu}_{\text{fid}}$ [%]
Statistical	1.0
Luminosity	3.1
Theory modelling	CT P SH
ISR/FSR	4.2
Hadronisation	0.8
NLO matching method	0.7
PDF	<0.1
Ratio Wt/tt	2.2
DR/DS	0.1
Detector	
Jet	5.2
Lepton	2.3
ET	0.2
b-tag	2.3
Background norm.	<0.1
Total	8.2

Backup: Polarization definitions and results.

Asymmetry	Angular observable	Polarisation observable	SM prediction	
$A_{\rm FB}^{\ell}$	$\cos \theta_{\ell}$	$\frac{1}{2} \alpha_{\ell} P$	0.45	
$A_{\rm FB}^{tW}$	$\cos \theta_W \cos \theta_\ell^*$	$\frac{3}{8}P(F_{\rm R}+F_{\rm L})$	0.10	
A _{FB}	$\cos heta_{\ell}^*$	$\tfrac{3}{4}\langle S_3\rangle=\tfrac{3}{4}\left(F_{\rm R}-F_{\rm L}\right)$	-0.23	
A _{EC}	$\cos heta_{\ell}^{*}$	$\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0\rangle = \frac{3}{16}\left(1 - 3F_0\right)$	-0.20	
$A_{\rm FB}^T$	$\cos heta_{\ell}^T$	$\frac{3}{4}\langle S_1 \rangle$	0.34	
$A_{\rm FB}^N$	$\cos \theta_{\ell}^{N}$	$-\frac{3}{4}\langle S_2\rangle$	0	
$A_{\rm FB}^{T,\phi}$	$\cos\theta_{\ell}^*\cos\phi_T^*$	$-\frac{2}{\pi}\langle A_1\rangle$	-0.14	
$A_{ m FB}^{N,\phi}$	$\cos\theta^*_\ell\cos\phi^*_N$	$\frac{2}{\pi}\langle A_2 \rangle$	0	

- Preselection cuts.
 - Exactly one lepton.
 - Exactly two jets, one being tagged (2j1b).

Events / 15 GeV

20000

15000

10000

5000

100

Pred

ATLAS

200

300

• H₋ > 200 GeV

400

• MET > 30 GeV.

• 130GeV < m(l∨b) < 200 GeV

Uncertainties

Uncertainty source	$\Delta A_{\rm FB}^\ell \times 10^2$	Uncertainty source	$\Delta A_{\rm FB}^N \times 10^2$
Statistical uncertainty	±2.6	Statistical uncertainty	±2.2
Simulation statistics	±1.7	Simulation statistics	±1.3
Luminosity	< 0.1	Luminosity	< 0.1
Background normalisation	±0.5	Background normalisation	±0.4
$E_{\rm T}^{\rm miss}$ reconstruction	+0.9 -0.1	$E_{\rm T}^{\rm miss}$ reconstruction	+0.3
Lepton reconstruction	$^{+1.0}_{-0.4}$	Lepton reconstruction	+0.1 -0.2
Jet reconstruction	±2.1	Jet reconstruction	±0.8
Jet energy scale	+1.3 -1.2	Jet energy scale	+0.9
Jet flavour tagging	±0.9	Jet flavour tagging	±0.2
PDF	±0.2	PDF	±0.1
tī generator	±2.3	<i>tt</i> generator	±0.2
tī parton shower	±0.6	tī parton shower	±1.5
tī scales	±0.2	<i>tī</i> scales	±0.3
Wt, s-channel generator	± 1.0	Wt, s-channel generator	±0.2
Wt, s-channel scales	±0.9	Wt, s-channel scales	±0.6
t-channel NLO generator	± 1.4	t-channel NLO generator	±0.3
t-channel LO–NLO generator	±1.5	t-channel LO-NLO generator	±0.5
t-channel parton shower	±0.5	t-channel parton shower	±0.7
t-channel scales	±1.1	t-channel scales	±0.9
W+jets, multijet modelling	+1.9 -2.4	W+jets, multijet modelling	+0.7 -0.6
Total systematic uncertainty	+5.4 -5.4	Total systematic uncertainty	+2.9 -2.9

• Main systematics: ttbar modelling, jet calibration, MC statistics.

7–9 May

600

vs = 8 TeV, 20.2 fb

WLID

W+jets

Multipt

VV Z+jets

Stat.+Multiet und

500

H_T(I, J, E^{miss}) [GeV]

Data 2012

Wtb vertex using t-channel @ 8 TeV.

• Probe Wtb vertex structure in the t-channel using angular asymmetries.

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \,\overline{b} \gamma^{\mu} \left(V_{\rm L} P_{\rm L} + V_{\rm R} P_{\rm R} \right) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \,\overline{b} \,\frac{i\sigma^{\mu\nu} q_{\nu}}{m_{W}} \left(g_{\rm L} P_{\rm L} + g_{\rm R} P_{\rm R} \right) t W_{\mu}^{-} + \text{h.c.}$$

- Main backgrounds:
 - ttbar, W+jets.
 - E_{T}^{MISS} used to supress **multijet** contributions.
- Combined maximum likelihood fit over signal and control regions.

- Unfolding to parton level.
- A_{FB}^{N} and A_{FB}^{-1} used to set **limits on anomalous** couplings and compute **top-quark polarization**:

I m (g_R) \in [-0.18, 0.06]at 95% CL if V_L=1; V_R=g_L=R e(g_R)=0 $\alpha_1 P = 0.97 \pm 0.05 (\text{stat.}) \pm 0.11 (\text{syst.})$

 $A_{\rm FB} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$

In the SM: $V_{I} = V_{th}$

anomalous couplings = 0.

 α_{l} =0.998 (at NLO) P_t=0.91 (at NLO)

Pheno 2018. Pittsburgh

• Lepton charge distribution in control region used to better constraint W+jets from other backgrounds.

- jet enegy resolution (12%).
- t-channel modelling (11%).

tZq @ 13 TeV: event selection and main uncertainties.

EVENT SELECTION:

UNCERTAINTIES:

Common selections			Source	Uncertainty [%]	
exactly 3 leptons with $ \eta < 2.5$ and $p_{\rm T} > 15 {\rm GeV}$				tZq radiation	±10.8
$p_{\rm T}(\ell_1) > 28 {\rm GeV}, p_{\rm T}(\ell_2) > 25 {\rm GeV}, p_{\rm T}(\ell_3) > 15 {\rm GeV}$				Jets	±4.6
	$m_{\rm T}(\ell_W, \nu) > 20$)GeV		Luminosity	±3.2
SR	Diboson VR / CR	tī VR	tī CR	b-tagging	±2.9
≥ 1 OSSF Pair	\geq 1 OSSF Pair	≥ 1 OSSF Pair	≥ 1 OSOF Pair	MC statistics	±2.8
$ m_{\ell\ell}-m_Z <10{\rm GeV}$	$ m_{\ell\ell} - m_Z < 10 \text{GeV}$	$ m_{\ell\ell} - m_Z > 10 \text{GeV}$		Leptons	±2.1
$= 2$ jets, $ \eta < 4.5$	$= 1 \text{ jet}, \eta < 4.5$	$= 2$ jets, $ \eta < 4.5$	$= 2 \text{ jets}, \eta < 4.5$	tZa PDE	+1.2
$= 1 b$ -jet, $ \eta < 2.5$		$= 1 b$ -jet, $ \eta < 2.5$	$= 1 b$ -jet, $ \eta < 2.5$	rmiss	1.2
	$VR/CR: m_T(t_W, v) > 20/60 \text{ GeV}$	(<u>1111)</u>		ET	±0.3

Pheno 2018. Pittsburgh