

Searches for supersymmetric partners of third-generation quarks in CMS

Hui Wang

University of Illinois at Chicago
On behalf of CMS Collaboration
PHENO 2018

Introduction

Why 3rd-gen squarks?

- Tops and bottoms contribute most to the loop correction of Higgs mass
- Unfortunately, SUSY is broken
- Natural models of SUSY: masses of 3rd-gen squarks less than a few TeV

Natural models of SUSY

Simplified SUSY models

Simplified SUSY models, assuming 100% branching ratio

CMS 2016 data, 35.9 fb⁻¹ @ 13 TeV

• 2 leptons:

SUS-17-001 arXiv:1711.00752

• 1 lepton:

SUS-16-051 arXiv:1706.04402

• 0 lepton:

SUS-16-050 (stop, gluino) <u>arXiv:1710.11188</u>

SUS-16-033 (stop, gluino) arXiv:1704.07781

SUS-16-032 (sbottom) <u>arXiv:1707.07274</u>

More results:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

sTop search with 2 leptons

• Search in final states of 2 leptons (e/μ) , jets, bjets and MET

SUS-17-001

• Dominant ttbar background is reduced by $M_{T2}(II)$

$$M_{T2}(\ell\ell) = \min_{\vec{p}_{\mathrm{T1}}^{\mathrm{miss}} + \vec{p}_{\mathrm{T2}}^{\mathrm{miss}} = \vec{E}_{\mathrm{T}}^{\mathrm{miss}}} \left(\max \left[M_{T}(\vec{p}_{\mathrm{T}}^{\mathsf{vis1}}, \vec{p}_{\mathrm{T1}}^{\mathrm{miss}}), M_{T}(\vec{p}_{\mathrm{T}}^{\mathsf{vis2}}, \vec{p}_{\mathrm{T2}}^{\mathrm{miss}}) \right] \right)$$

sTop search with 1 lepton

• Search in final states of 1 lepton (e/μ) , jets, bjets and MET

SUS-16-051

- ttbar (11) background is negligible after M_T cut
- Dominant ttbar (2I) background is reduced by modified topness (t_{mod})

 $t_{\text{mod}} = \ln(\min S)$, with $S(\vec{p}_{\text{W}}, p_z, \nu) = \frac{(m_{\text{W}}^2 - (p_{\nu} + p_{\ell})^2)^2}{a_{\text{W}}^4} + \frac{(m_{\text{t}}^2 - (p_{\text{b}} + p_{\text{W}})^2)^2}{a_{\text{t}}^4}$.

Unit-normalized topness Red: T2tt. Blue: ttbar dilepton. Cyan: ttbar one lepton, one τ

sBottom search with 0 lepton

Search in final states of 0 lepton, jets, bjets and MET

SUS-16-032

- Both leading and sub-leading jets be b-tagged
- ttbar background is reduced by $M_{T2}(bb)$
- $Z(\nu\nu)+jets$ and ttbar further reduced by contransverse mass (M_{CT}^2)

sTop search with 0 lepton

- CMS
- Search in final states of 0 lepton, tagged tops, jets, bjets and MET
- Dominant ttbar background is reduced by $M_{T2}(tt)$

SUS-16-050

Top tagger Algorithm

- First tag fully merged tops
- Anti-kt jet with radius parameter = 0.8 (AK8)
- Tagged boosted ($p_T > 400$) top
- Then tag partially merged tops
- Tagged AK8 boosted ($p_T > 200$) W combined with a nearby AK4 jet
- Last tag unmerged (resolved) tops
- Combine three resolved AK4 jets (random forest algorithm)

sTop search with 0 lepton

Limits with top tagger SUS-16-050

Summary

Combined limits for T2tt, T2bw and T2bb

- Now working on 2016 + 2017 data (~80 fb⁻¹)
- Can we catch SUSY with double statistics?

Thanks for your attention!

Backup slides

M_{T2} detail

- Also known as The Stransverse Mass
- Author website: http://www.hep.phy.cam.ac.uk/~lester/mt2/

$$\mathbf{p}_T = \mathbf{p}_{T\tilde{\chi}_a} + \mathbf{p}_{T\tilde{\chi}_b}. \tag{9}$$

If $\mathbf{p}_{T\tilde{\chi}_a}$ and $\mathbf{p}_{T\tilde{\chi}_b}$ were obtainable, then one could form two transverse masses, and using the relationship (8) obtain,

$$m_{\tilde{l}}^2 \ge \max\{m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_{T\tilde{\chi}_a}), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_{T\tilde{\chi}_b})\}$$

$$\tag{10}$$

However, not knowing the form of the splitting (9), the best we can say is that:

$$m_{\tilde{l}}^2 \ge M_{T2}^2 \equiv \min_{\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}_T} \left[\max \left\{ m_T^2(\mathbf{p}_{Tl^-}, \mathbf{p}_1), m_T^2(\mathbf{p}_{Tl^+}, \mathbf{p}_2) \right\} \right]$$
 (11)

Topness details

Original paper: arXiv:1212.4495

$$t_{\text{mod}} = \ln(\min S), \text{ with } S(\vec{p}_W, p_z, \nu) = \frac{(m_W^2 - (p_\nu + p_\ell)^2)^2}{a_W^4} + \frac{(m_t^2 - (p_b + p_W)^2)^2}{a_t^4}.$$
 (7)

This equation uses the mass constraints for the particles and also the assumption that $\vec{p}_{\rm T}^{\rm miss} = \vec{p}_{\rm T,W} + \vec{p}_{\rm T,\nu}$. The first term constrains the W boson whose lepton decay product is the detected lepton, while the second term constrains the top quark for which the lepton from the W boson decay is lost in the reconstruction. Once again, we consider all possible pairings of b jet candidates with up to three jets with highest CSV discriminator values. The calculation of modified topness uses the resolution parameters $a_{\rm W} = 5\,{\rm GeV}$ and $a_{\rm t} = 15\,{\rm GeV}$, which determine the relative weighting of the mass shell conditions. We select events with $t_{\rm mod} > 6.4$. The definition of

Contransverse mass details

- Original paper: arXiv:0802.2879
- Cut at contransverse mass = 150 GeV

Consider 'symmetric' events in which identical cascade decay chains of the form

$$\delta \to \alpha v$$

where v_i are the visible products of each decay chain, $\mathbf{p_T}(v_i)$ is the tranverse momentum vector of v_i and

$$E_T(v_i) \equiv \sqrt{p_T^2(v_i) + m^2(v_i)}.$$
(1.2)

It can be shown [9] that M_{CT} is in general bounded from above by a quantity dependent upon the masses $m(\delta)$ and $m(\alpha)$. If $m(v_1) = m(v_2) \equiv m(v)$ then the distribution of event M_{CT} values possesses an end-point at:

$$M_{CT}^{\max}[m^2(v)] = \frac{m^2(v)}{m(\delta)} + \frac{m^2(\delta) - m^2(\alpha)}{m(\delta)}.$$
 (1.3)

Top tagger - Algorithm

CMS

- First tag fully merged tops
- Anti-kt jet with radius parameter = 0.8 (AK8)
- Tagged boosted ($p_T > 400$) top
- Then tag partially merged tops
- Tagged AK8 boosted ($p_T > 200$) W combined with a nearby AK4 jet
- Cone radius R = 1
- Combined mass consistent with top mass (100-250)
- W mass/combined mass consistent with m_W/m_t (0.85 1.25)
- Last tag unmerged (resolved) tops
- Combine three resolved AK4 jets (random forest algorithm)
- Cone radius R = 1.5
- No more than one of the three jets can be b tagged
- Combined mass consistent with top mass (100-250)

Top tagger - Details

CMS

- 1. mass of the trijet system
- 2. mass of each dijet combination
- 3. angular separation and momenta of the jets in the trijet rest frame
- 4. b tagging discriminator value of each jet
- 5. quark-versus-gluon-jet discriminator value of each jet

SUS-16-050

5 input parameters for random forest algorithm

sTop search with 0 lepton

LL systematic uncertainties

Signal systematic uncertainties

SUS-16-050

Table 35: In T2tt SMS, the signal systematic sources and their typical ranges. The correlation of the uncertainty across signal bins is indicated in the last column.

Source	Typical Values	Correlated?
MC statistics	1-100%	No
Luminosity	2.6%	Yes
Renormalization and factorization scales	0-2.4%	Yes
"ISR" recoil	0-46%	Yes
b-tagging efficiency, heavy flavor	0-17%	Yes
b-tagging efficiency, light flavor	0-17%	Yes
Lepton veto	0-4.7%	Yes
Jet energy scale	0-20%	Yes
MET uncerntainty	0-24%	Yes
Trigger	0-2.6%	Yes
Full/fastsim scale for top reco.	0-19%	Yes
top tagger efficiency data/MC difference	0-14%	Yes

Abstract

Supersymmetric partners of third-generation quarks play a crucial role in models of natural supersymmetry. The talk reports on results of searches for top and bottom squarks, based on pp collisions recorded during LHC Run 2 by the CMS experiment. The searches cover final states with 0, 1, or 2 leptons and are interpreted in simplified models that cover different kinematic domains defined by the mass difference between the squark and the lightest supersymmetric particle.