The Constructive SM

Neil Christensen

Department of Physics Illinois State University arXiv:1802.00448 with Bryan Field

Feynman Diagrams

# External Gluons	4	5	6	7	8	9	10
# Feynman Diagrams	4	25	220	2,485	34,300	559,405	10,525,900

- Exponential growth in number of diagrams.
- Leading order in perturbation theory.
- Diagrams lose their meaning and utility.
- Complicated gauge cancellations.

Feynman Diagrams

- Part of the problem is that fields and Feynman diagrams contain unphysical degrees of freedom.
- For example, there are only two physical degrees of freedom for the photon, positive and negative helicity.
- Yet, in order to form a manifestly Lorentz invariant theory, we embed the photon in a Lorentz 4-vector, resulting in two unphysical degrees of freedom.
- We are then forced to invent a "gauge symmetry" to cancel the effects of these unphysical degrees of freedom.

Hints of Something Better

Parke-Taylor formula for n gluons [Phys. Rev. Lett. 56, 2459 (1986)]

$$\mathcal{M}^{1,1,-1,\cdots,-1} = \frac{[12]^4}{[12][23]\cdots[n1]}$$

Maximally-helicity-violating gluon amplitudes can be written with only one mathematical term no matter how many gluons are present.

Clearly, Feynman diagrams are adding a bunch of extraneous garbage that cancels out at the end!

BCFW Recursion Relations

 Britto, Cachazo, Feng and Witten [Phys. Rev. Lett. 94, 181602 (2005)] found recursion relations that gave all gluon amplitudes (at tree level) without Feynman diagrams!

These BCFW diagrams (as opposed to Feynman diagrams):

- do not have unphysical degrees of freedom!
- do not have complicated cancellations between diagrams!
- are always on shell!
- have exponentially fewer diagrams! Sometimes only 1!
- do not have any gauge choice and thus no need for gauge invariance!
- Appear to be minimal!

Constructive Massless Theories

- All 3-point vertices for massless theories can be determined uniquely based purely on the Poincare symmetry.
- For example, the (color stripped) vertex of two helicity +1 particles and one helicity -1 particle must have the structure

$$\mathcal{A}(1,1,-1) = \frac{[12]^3}{[23][31]}$$

Constructive Massive Theories

- Arkani-Hamed, Huang and Huang (arXiv:1709.04891) showed how to generalize this to massive theories.
- The structure of all 3-point vertices for massive theories can be determined based purely on the Poincare symmetry.
- Combine helicity-spinors (for the massless particles) with spin-spinors (for the massive particles) in a way that satisfies the Poincare symmetry for the three point amplitude. For example, for one massless particle and two massive particles of the same mass,

$$M^{h}_{\{\alpha_{1}\alpha_{2}\cdots\alpha_{2S_{1}}\},\{\beta_{1}\beta_{2}\cdots\beta_{2S_{2}}\}} = \sum_{i=|S_{1}-S_{2}|}^{(S_{1}+S_{2})} g_{i}x^{h+i}(\lambda_{3}^{2i}\varepsilon^{S_{1}+S_{2}-i})_{\{\alpha_{1}\alpha_{2}\cdots\alpha_{2S_{1}}\},\{\beta_{1}\beta_{2}\cdots\beta_{2S_{2}}\}}$$

Constructive SM

• NC and B Field (arXiv:1709.04891) specialized this to the SM.

$$x^{h} \frac{\langle \mathbf{12} \rangle^{2S}}{m^{2S-1}} \qquad \qquad x = \frac{\langle \xi | p_{2} | 3]}{m \langle \xi 3 \rangle}$$

- Worked out the complete set of minimal 3-point vertices for the SM.
- Found the high-energy limit of these massive vertices and showed that we recovered the expected purely massless vertices.

Constructive EM

Particles	Coupling	Vertex	High-Energy Limit (Helicity Signature)	
$\int \bar{f} \bar{\gamma}^+$	$-ieQ_f$	$x\langle 12 angle$	$\frac{[23]^2}{[12]} (-+), \qquad -\frac{[31]^2}{[12]} (+-)$	
$f\bar{f}\gamma^{-}$	$-ieQ_f$	$ ilde{x}[12]$	$\frac{\langle 23 \rangle^2}{\langle 12 \rangle} (+-), \qquad -\frac{\langle 31 \rangle^2}{\langle 12 \rangle} (-+)$	
$W\bar{W}\gamma^+$	-ie	$rac{x}{M_W} \langle 12 angle^2$	$\frac{[23]^3}{[12][31]}(-+), 2\frac{\langle 12\rangle^3}{\langle 23\rangle\langle 31\rangle}(), \frac{[31]^3}{[12][23]}(+-), -\frac{1}{2}\frac{[31][23]}{[12]}(00)$))
$W\bar{W}\gamma^{-}$	-ie	$\frac{\tilde{x}}{M_W} [12]^2$	$\frac{\langle 23\rangle^3}{\langle 12\rangle\langle 31\rangle}(+-), 2\frac{[12]^3}{[23][31]}(++), \frac{\langle 31\rangle^3}{\langle 12\rangle\langle 23\rangle}(-+), -\frac{1}{2}\frac{\langle 31\rangle\langle 23\rangle}{\langle 12\rangle}(0)$	0)

$$x = \frac{\langle \xi | p_2 | 3]}{m \langle \xi 3 \rangle} \qquad \qquad \tilde{x} = \frac{[\xi | p_2 | 3 \rangle}{m[\xi 3]}$$

Constructive QCD

Particles	Coupling	Vertex	High-Energy Limit (Helicity Signature)
$q\bar{q}g^+$	$ig_s(T^{a_3})_{i_1}^{i_2}$	$x\langle 12 angle$	$\frac{[23]^2}{[12]} (-+), \qquad -\frac{[31]^2}{[12]} (+-)$
$q \bar{q} g^-$	$ig_s(T^{a_3})_{i_1}^{i_2}$	$ ilde{x}[12]$	$\frac{\langle 23\rangle^2}{\langle 12\rangle} (+-), \qquad -\frac{\langle 31\rangle^2}{\langle 12\rangle} (-+)$
$g^-g^-g^+$	$ig_s f^{a_1 a_2 a_3}$	$\frac{\langle 12 \rangle^3}{\langle 23 \rangle \langle 31 \rangle}$	Already massless
$g^+g^+g^-$	$ig_s f^{a_1 a_2 a_3}$	$\frac{[12]^3}{[23][31]}$	Already massless

$$x = \frac{\langle \xi | p_2 | 3]}{m \langle \xi 3 \rangle} \qquad \qquad \tilde{x} = \frac{[\xi | p_2 | 3 \rangle}{m[\xi 3]}$$

Constructive Gravity

Particles	Coupling	Vertex	High-Energy Limit (Helicity Signature)
hhG^+	$rac{i}{M_P}$	$x^2 m_h^2$	$\left(\frac{[23][31]}{[12]}\right)^2$
hhG^-	$rac{i}{M_P}$	$ ilde{x}^2 m_h^2$	$\left(\frac{\langle 23\rangle\langle 31\rangle}{\langle 12\rangle}\right)^2$
$f\bar{f}G^+$	$rac{i}{M_P}$	$x^2 m_f \langle 12 angle$	$\frac{[23]^3[31]}{[12]^2}(-+), -\frac{[31]^3[23]}{[12]^2}(+-)$
$f\bar{f}G^{-}$	$rac{i}{M_P}$	$ ilde{x}^2 m_f [12]$	$\frac{\langle 23\rangle^3 \langle 31\rangle}{\langle 12\rangle^2} (+-), -\frac{\langle 31\rangle^3 \langle 23\rangle}{\langle 12\rangle^2} (-+)$
$V\bar{V}G^+$	$rac{i}{M_P}$	$x^2 \langle 12 angle^2$	$\frac{[23]^4}{[12]^2}(-+), -\frac{1}{2}\frac{[31]^2[23]^2}{[12]^2}(00), \frac{[31]^4}{[12]^2}(+-)$
$V\bar{V}G^-$	$rac{i}{M_P}$	$ ilde{x}^2 [12]^2$	$\frac{\langle 23\rangle^4}{\langle 12\rangle^2}(+-), -\frac{1}{2}\frac{\langle 31\rangle^2 \langle 23\rangle^2}{\langle 12\rangle^2}(00), \frac{\langle 31\rangle^4}{\langle 12\rangle^2}(-+)$
$\gamma^+ \gamma^- G^+$	$\frac{i}{1}$	$\frac{[31]^4}{[1012]}$	Already massless
$g^+g^-G^+$	M_P	[12]2	

Constructive Weak

Particles	Coupling	Vertex	High-Energy Limit
$\nu^- \bar{\nu}^+ Z$	$\frac{ie}{\sin 2\theta_w}$	$rac{\langle {f 3}1 angle [2{f 3}]}{M_Z}$	$\frac{1}{2} \left(\frac{\langle 31 \rangle^2}{\langle 12 \rangle} - \frac{[23]^2}{[12]} \right)$
$f\bar{f}Z$	$\frac{ie}{\sin 2\theta}$	$rac{\langle {f 31} angle [{f 23}] + [{f 31}] \langle {f 23} angle}{M_Z}$	$\frac{1}{2} \left(\frac{[31]^2}{[12]} + \frac{\langle 31 \rangle^2}{\langle 12 \rangle} - \frac{\langle 23 \rangle^2}{\langle 12 \rangle} - \frac{[23]^2}{[12]} \right) ,$
	$\sin 2\theta_w$		$\pm \frac{m_f}{M_Z} \left([12] + \langle 12 \rangle \right)$
$l\bar{\nu}_l^+ W = \frac{ie}{2\sqrt{2}\cos^2\theta}$	$\frac{ie}{2\sqrt{2}}$	$\frac{\langle 31 \rangle [23]}{M_W} + \mathcal{N}_{Wl\nu} [31] [23]$	$\frac{1}{2} \left(\frac{\langle 31 \rangle^2}{\langle 12 \rangle} - \frac{[23]^2}{[12]} \right) ,$
	$2\sqrt{2\cos\theta_w}$		$\frac{m_l}{M_W}[12]$
$\bar{l}\nu_l^-\bar{W} \frac{ie}{2\sqrt{2}\cos\theta_u}$	ie	$\frac{[31]\langle 23\rangle}{M_W} + \mathcal{N}^*_{Wl\nu} \langle 31\rangle \langle 23\rangle$	$\frac{1}{2} \left(\frac{[31]^2}{[12]} - \frac{\langle 23 \rangle^2}{\langle 12 \rangle} \right) ,$
	$2\sqrt{2\cos\theta_w}$		$rac{m_l}{M_W}\langle 12 angle$
$f_i \bar{f}_j W = \frac{1}{2\sqrt{2}}$		$ig \langle {f 31} angle [{f 23}] + [{f 31}] ig \langle {f 23} angle$	$\frac{1}{2} \left(\frac{[31]^2}{[12]} + \frac{\langle 31 \rangle^2}{\langle 12 \rangle} - \frac{\langle 23 \rangle^2}{\langle 12 \rangle} - \frac{[23]^2}{[12]} \right) ,$
	$\frac{ie}{2\sqrt{2}\cos\theta_w}$	$\frac{M_W}{w} + \mathcal{N}_{Wff} \left(\langle 31 \rangle \langle 23 \rangle + [31][23] \right)$	$+\frac{m_i}{M_W}\left([12]+\langle 12\rangle\right),$
			$-\frac{m_j}{M_W}\left([12] + \langle 12 \rangle\right)$
			$-\frac{1}{4}\left(\frac{\langle 12\rangle^3}{\langle 23\rangle\langle 31\rangle} + \frac{[12]^3}{[23][31]}\right)$
			$+\frac{1}{4}\frac{M_W}{M_Z}\left(\frac{\langle 12\rangle\langle 31\rangle}{\langle 23\rangle}+\frac{[12][31]}{[23]}+\frac{\langle 12\rangle\langle 23\rangle}{\langle 31\rangle}+\frac{[12][23]}{[31]}\right) ,$

Conclusions

- We have constructed the complete set of 3-point amplitudes for the SM.
 - We have only used the Poincare and little group symmetries.
 - We have done this without the use of fields, Feynman rules or gauges.
 - We have found the high-energy behavior of these massive vertices and showed that they agreed with the well-known massless vertices.
- The massive constructive theory is still not complete. There is still much to do. For example:
 - Work out all the 4-point "contact" terms of the SM.
 - Work out a complete consistent BCFW-like recursion relation for any npoint amplitude.
 - Work out a complete set of rules giving any loop contribution in terms of the 3-point amplitudes.