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• Exponential growth in number of diagrams. 

• Leading order in perturbation theory. 

• Diagrams lose their meaning and utility.  

• Complicated gauge cancellations.

Feynman Diagrams
# External 

Gluons 4 5 6 7 8 9 10

# Feynman 
Diagrams 4 25 220 2,485 34,300 559,405 10,525,900



• Part of the problem is that fields and Feynman 
diagrams contain unphysical degrees of freedom. 

• For example, there are only two physical degrees of 
freedom for the photon, positive and negative helicity.   

• Yet, in order to form a manifestly Lorentz invariant 
theory, we embed the photon in a Lorentz 4-vector, 
resulting in two unphysical degrees of freedom.   

• We are then forced to invent a “gauge symmetry” to 
cancel the effects of these unphysical degrees of 
freedom.

Feynman Diagrams



• Parke-Taylor formula for n gluons [Phys. Rev. Lett. 
56, 2459 (1986)]

Hints of Something Better

M1,1,�1,··· ,�1 =
[12]4

[12][23] · · · [n1]

Maximally-helicity-violating gluon amplitudes can 
be written with only one mathematical term no 
matter how many gluons are present.

Clearly, Feynman diagrams are adding a bunch of 
extraneous garbage that cancels out at the end!



• Britto, Cachazo, Feng and Witten [Phys. Rev. Lett. 
94, 181602 (2005)] found recursion relations that 
gave all gluon amplitudes (at tree level) without 
Feynman diagrams!

BCFW Recursion Relations

These BCFW diagrams (as opposed to Feynman diagrams): 
• do not have unphysical degrees of freedom! 
• do not have complicated cancellations between diagrams! 
• are always on shell! 
• have exponentially fewer diagrams!  Sometimes only 1! 
• do not have any gauge choice and thus no need for gauge 

invariance! 
• Appear to be minimal!



• All 3-point vertices for massless theories can be 
determined uniquely based purely on the Poincare 
symmetry.  

• For example, the (color stripped) vertex of two 
helicity +1 particles and one helicity -1 particle must 
have the structure
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depends on the internal consistency of the theory. I have
written it in a Hermitian form.

You may wonder how high the helicities can go. Nima
claims that you see this when you consider 4-point am-
plitudes because they can only be local if the helicities
are less than or equal to 2. That is something I am still
working on understanding. He claims he will have a pa-
per coming out anytime that explains all of this in great
detail.

Our next step will be to actually build a list of the non-
zero 3-point amplitudes. Remember that all particles are
incoming. Later when we actually want a real scattering
amplitude, we simply flip all but 2 of the particles. But,
as far as the connection with HOPF goes, it seems to me
(and I may be wrong) that we should just focus on the
all-incoming amplitudes.

So, what we do now is find all combinations of helicities
that add to ±1 and write their 3-point amplitudes. Up
to a coupling constant, we have
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A(1, 1,�1) =
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That is it for helicities up to 2. NC: (If I have missed any,
let me know.) Perhaps we should put this in a table?
We could just show the h1 +h2 +h3 = +1 and note that
flipping all the helicities causes [] ! hi. But, I thought it
might be good to see them all explicitly.
The tree-level amplitudes are these structures times a

“coupling” constant. Some of those coupling constants
will need to be related to each other to form a consistent
theory and it will be found that they satisfy a global
symmetry. But, no local symmetries will be needed. As
for the full non-perturbative amplitudes, I have seen some
statements that they also must be of this form up to a
dimensionless function of the invariants (pi · pj , where i

and j are any of 1, 2, 3). However, I do not know why it
couldn’t get its dimensionality partly from the brackets
(hiji and [ij]) and partly from the invariants (pi ·pj). So,
I guess that understanding will have to come later.
Now, let’s notice a few things about these 3-point am-

plitudes. First, when we flip all helicities, we simply re-
place all square brackets [ij] with angle brackets hiji and
vice versa. Second, when the amplitude only deals with
helicities that are all �1/2  hi  1/2, there is noth-
ing in the denominator. But, when any of the helicities
is hi � 1 or hi  �1, suddenly the denominator be-
comes non-trivial. In fact, when this happens, a new pole
appears and these 3-point amplitudes become non-local.
You may wonder why we have never noticed this before.
The reason is that these vertices all vanish in Minkowski
space (all momenta real), so it has never been an issue.
But, it is important here and will play an important role
when we start building higher multiplicity amplitudes.
(This is something Nima tells us in his talks.) Third, We
see that we never encounter an amplitude with all three
helcities being half an odd integer. Fourth, we see that
as we increase the helicities, we increase the power of the
brackets in the denominator. This, in turn, increases the
power of the pole and the non-localness of the vertex.
(Again, Nima points out the importance of this in his
talks.) Sixth, we see that the 3-point gluon amplitude in
Eq. (76) has the form of the celebrated MHV amplitude.
Namely,

A(1, 1,�1,�1, · · · ,�1) =
[12]4

[12][23][34] · · · [n1] (80)

and

A(�1,�1, 1, 1, · · · , 1) = h12i4

h12ih23ih34i · · · hn1i (81)

where there are n particles altogether, with all but the
first two helicities begin either positive or negative, re-
spectively.



• Arkani-Hamed, Huang and Huang (arXiv:1709.04891) 
showed how to generalize this to massive theories. 

• The structure of all 3-point vertices for massive theories can 
be determined based purely on the Poincare symmetry.  

• Combine helicity-spinors (for the massless particles) with 
spin-spinors (for the massive particles) in a way that 
satisfies the Poincare symmetry for the three point 
amplitude.  For example, for one massless particle and two 
massive particles of the same mass,
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Now the only objects we have carrying SL(2,C) indices are �3, as well as the the anti-

symmetric tensor "↵� .5 We can then express the three-point amplitude as:
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(4.12)

where the superscript on �, ", p�̃/m indicates its power. For later purpose we present it in

two equivalent representations.

4.3 Minimal Coupling for Photons, Gluons, Gravitons

We have seen that while there is a unique structure for massless three-particle amplitudes

once the helicities are specified, for couplings of e.g. two equal mass particles of spin S

to a massless particle there are (2S+1) independent structures. One of these structures is

special, and corresponds to what we usually think of as “minimal coupling” to photons,

gluons and gravitons. The defining characteristic of “minimal coupling” is physically very

clear. For massless particles, the mass dimension of the couplings is given by 1� |h1 + h2 +

h3|, and so the leading low-energy interactions with photons, gluons and gravitons–those

with dimensionless gauge couplings e, g or gravitational coupling 1/MP l, involve massless

particles of opposite helicity. The definition of “miminal coupling” for massive particles is

then simply the interaction whose leading high-energy limit is dominated by precisely this

helicity configuration. As we will see the remaining (2S + 1)� 1 = 2S interactions represent

the various multipole-moment couplings (such as the magnetic dipole moment in the coupling

to photons.)

In our undotted SL(2,C) basis, the amplitude with a positive helicity state can be viewed

as an expansion in �. The leading piece in this expansion, namely that where the SL(2,C)

indices are completely carried by the Levi-Cevita tensors, precisely corresponds to minimal

coupling! It is instructive to see why this is the case. Using the simplest example, a photon

coupled to two fermions, we find:

xm"↵1↵2 ! xh12i = h12i
h⇣|p2|3]

mh⇣3i
=

h2⇣i[31] + h1⇣i[32]

h⇣3i
(4.13)

Taking the high energy limit, we see that the leading term indeed correspond two possible

pairs of opposite helicity fermion,

h2⇣i[31] + h1⇣i[32]

h⇣3i
H.E.

������!

[13]2

[12]
+

[12]2

[13]
+O(m) . (4.14)

5Note in the unequal mass case, since u, v provided a basis, we didn’t need to separately introduce "↵�

since (u↵v� � u�v↵) = huvi"↵� . However as m1 ! m2 these invariants vanish. This also shows the absence of

a singularity in eq.(4.8) as m1 ! m2.
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• NC and B Field (arXiv:1709.04891) specialized this 
to the SM. 

• Worked out the complete set of minimal 3-point 
vertices for the SM. 

• Found the high-energy limit of these massive 
vertices and showed that we recovered the 
expected purely massless vertices.
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minimal vertex as,

xh h12i
2S

m2S�1
, (1)

where both of the massive particles (here labelled 1 and 2) have the same mass m and spin S (where the spin indices
for each are completely symmetrized). They note that x is not uniquely defined, but can be written conveniently as,

x =
h⇠|p2|3]

mh⇠3i
, (2)

where particle 3 will be our massless particle, although either massive particle momenta, p1 or p2, could be used,
and h⇠| is a helicity-spinor that must be linearly independent from |3i. Since there are not any linearly independent
helicity-spinors among the properties of the particles currently under consideration, |⇠i must be chosen independently
of the current particle configuration. For this reason, it is a spurious degree of freedom and the final scattering
amplitude cannot depend on it, but should be chosen judiciously for ease of computation. Ref. [14] points out that it
is often convenient to choose it as a helicity-spinor from an external leg that is not directly connected to this vertex,
but is part of a larger scattering calculation, such as on the other side of a 4-point amplitude, because then it leads
to convenient factorization properties. We note that “x” transforms under the little group the same as if particle 3
is helcity +1. Therefore, we find that the vertex given in Eq. (1) was constructed to have the right transformation
properties since x is raised to the h power and h12i is raised to the 2S power.

Although we see that Eq. (1) has the right transformation properties whether the helicity of the massless particle is
positive or negative, we find it convenient to only use it for positive helicity particles. For negative helicity particles,
we find it more convenient to introduce,

x̃ =
[⇠|p2|3i

m[⇠3]
, (3)

and define the minimal vertex as,

x̃�h [12]2S

m2S�1
. (4)

As we see, x̃ transforms like particle 3 with a helicity of �1, therefore this vertex transforms properly as well. When
these vertices are used to construct larger scattering amplitudes, it is important to remember that ⇠ can be chosen
independently for each vertex. It does not need to be the same for any two vertices in the same amplitude. But,
again, their dependence must cancel at the end of the calculation.

In the vertices below, in order to find the high-energy limit, we will need to expand x and x̃ to linear order in the
mass, this will also allow us to identify useful ⇠ spinors to simplify our results. In other situations, it will become
necessary to expand beyond linear order in the mass. We will do our linear expansion by first inserting p2 = |2iJ [2|J
[where J is the SU(2) spin index] to obtain,

x =
h⇠2iJ [23]J
mh⇠3i

.
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where ⇣±J = ⇣±J(k) (see App. A for the appropriate definitions). Therefore,

x =

✓
1�

m2

2E2
2

◆
h⇠2i[23]

mh⇠3i
�

m

2E2

h⇠⇣�2 i[⇣̃+2 3]

h⇠3i
+O

�
m2

�
, (6)

and a similar calculation gives,
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Particles Coupling Vertex High-Energy Limit (Helicity Signature)
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TABLE I. QED vertices within the Standard Model and their high-energy limit. Here, f stands for a fermion while f̄ stands
for an anti-fermion. The superscript in the first column gives the helicity of the massless particles. The position of the particle
determines the number in the last two columns. Definitions for x and x̃ are in Eqs. (2) and (3). See Sec. I for further details.
In the high-energy limit, we show all the terms (including Goldstone-boson terms) that do not vanish at order (m/E)0.

If it is not already obvious, we can start to see a typical identity where replacing x $ x̃ means replacing h i $ [ ]
within each expression leads to a valid expression. We will also need to apply momentum conservation in the following
calculations. It is straight forward in terms of the momenta, which we take to be all incoming. For example, since all
our momenta sum to zero, when we remember that p3 is our massless momentum we find,

|2iJ [2|J = �|1iJ [1|J � |3i[3|. (8)

However, what we will actually need is the high-energy expansion of this expression to quadratic order in m. Rather
than doing this in complete generality, we will expand h12i[23], which will appear in the calculations below. We note
that if we only kept terms up to zeroth order in m, the result would be identical zero (since h12i[23] = �h11i[13] �
h13i[33] but h11i = [33] = 0). However, the quadratic term gives us the desired results. Thus, the momentum
conservation expression can be simplified,

h12iJ [23]J = �h11iJ [13]J � h13i[33]

= �h11iJ [13]J , (9)

where we have used [33] = 0. Next, we expand both sides using Eq. (5) where we identify ⇠ with 1. We obtain,
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which clearly shows that the expansion starts with terms quadratic in mass as expected.

A. Massless Spin One Boson With Massive Spin-One-Half Fermions

We now move on to constructing a specific case. We begin with a massless ±1-helicity boson interacting with two
1/2-spin fermions which will give us the vertex structure for a photon interacting with two charged fermions and also
for a gluon interacting with two quarks. We first consider the case of particle 3 being +1-helicity, therefore the vertex
is simply given by,

xh12i. (11)

We will check this result by comparing with the vertex when all three particles are massless by taking the high-energy
limit and then keeping terms up to zeroth order in the mass (the massless limit). For convenience, we have included a
review of the massless vertices in App. B. The expression h12i has two SU(2) indices and can be written as a matrix.
We have already described and expanded this matrix in the high-energy limit in Appendix A. Therefore using Eqs.
(A41), (6) and (10), we obtain,
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and h⇠| is a helicity-spinor that must be linearly independent from |3i. Since there are not any linearly independent
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5

Particles Coupling Vertex High-Energy Limit (Helicity Signature)

qq̄g+ igs(T
a3)i2i1 xh12i [23]2

[12]
(�+), � [31]2

[12]
(+�)

qq̄g� igs(T
a3)i2i1 x̃[12]

h23i2

h12i (+�), �h31i2

h12i (�+)

g�g�g+ igsf
a1a2a3

h12i3

h23ih31i Already massless

g+g+g� igsf
a1a2a3

[12]3

[23][31]
Already massless

TABLE II. QCD vertices within the Standard Model along with their high-energy limit. Here, q stands for a quark while q̄
stands for an anti-quark. The superscript in the first column gives the helicity of the massless particles. The position of the
particle determines the number in the last two columns. Definitions for x and x̃ are in Eqs. (2) and (3). See Sec. I for further
details. In the high-energy limit, we show all the terms that do not vanish at order (m/E)0.

We can further simplify these terms by applying momentum conservation. In the top right entry, we can set h⇠2i[23] =
�h⇠1i[13] + O(m2

f ). We then follow this with h⇣�2 1i[13] = �h⇣�2 2i[23] + O(m2
f ), again on the top-right term, along

with h⇣�1 2i[23] = �h⇣�1 1i[13] +O(m2
f ) on the bottom-left term to obtain,

xh12i =

0

BB@
0

1
p
2E2

h2⇣�2 ih⇠1i[23]

h⇠3i
1

p
2E1

h⇣�1 1ih⇠2i[31]

h⇠3i
0

1

CCA+O(mf ). (13)

Now, using the fact that h2⇣�2 i =
p
2E2 and similarly for particle 1, we have,

xh12i =

0

BB@
0

h⇠1i[23]

h⇠3i
h⇠2i[31]

h⇠3i
0

1

CCA+O(mf ). (14)

Next, multiplying by [32]/[32] on the top right and [31]/[31] on the bottom left, and using momentum conservation in
the denominator, h⇠3i[32] = �h⇠1i[12] +O(m2

f ) and h⇠3i[31] = �h⇠2i[21] +O(m2
f ), we finally cancel the dependence

on ⇠ to obtain,

xh12i =

0

BB@
0

[23]2

[12]

�
[31]2

[12]
0

1

CCA+O(mf ). (15)

We remind the reader that |i] transforms as a +1/2-helicity particle while 1/|i] transforms as a �1/2-helicity particle
(since the transformation is a simple phase). The angle brackets have the opposite transformation properties. From
this, we can see that the upper right of this matrix corresponds with the quark having �1/2-helicity and the anti-quark
having +1/2-helicity. The bottom left of this matrix correspond with the opposite helicities for the fermions (but, of
course, the same +1-helicity for the massless photon or gluon). Both these high-energy-limit results agree with the
massless vertices given on the left of Eq. (B18). We note that although the signs of the massless vertices are not fixed
by the transformation properties alone, here the relative signs of these two vertices is fixed by the transformation
properties of the massive vertex. Furthermore, we note that the top-left entry corresponds with both fermions having
�1/2-helicity while the photon or gluon has +1-helicity. We get zero in the high-energy limit which is exactly what
we expect from the massless vertices as reviewed in Appendix B. Altogether, we obtain,

xh12i =
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✓
+
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2
,�
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2
,+1

◆
A

✓
+
1

2
,+

1

2
,+1

◆

3

775+O(mf ), (16)
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Particles Coupling Vertex High-Energy Limit (Helicity Signature)

hhG+ i
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x2m2
h
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h

✓
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(+�)
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x̃2mf [12]
h23i3h31i
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x2h12i2 [23]4
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(�+), �1

2
[31]2[23]2
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(+�)
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h12i2 (+�), �1
2
h31i2h23i2

h12i2 (00),
h31i4

h12i2 (�+)

�+��G+

i
MP

[31]4

[12]2
Already massless

g+g�G+

�+��G�
i

MP

h31i4

h12i2
Already massless

g+g�G�

G�G�G+ i
MP

h12i6

h23i2h31i2 Already massless

G+G+G� i
MP

[12]6

[23]2[31]2
Already massless

TABLE III. Gravitational Vertices along with their high-energy limit. Here, f stands for a fermion while f̄ stands for an
anti-fermion, and V and V̄ stand for a spin-1 boson and its anti-particle, respectively. Also, h stands for the Higgs boson. The
superscript in the first column gives the helicity of the massless particles. The position of the particle determines the number
in the last two columns. Definitions for x and x̃ are in Eqs. (2) and (3). See Sec. I for further details.

for helicity +2 and �2, respectively. We must now determine the high-energy behavior of this vertex. We already
know the behavior of xh12i [see Eq. (15)]. We must now calculate the high-energy behavior of mfx,

mfx =
h⇠2i[23]

h⇠3i
. (27)

Multiplying by [21]/[21] and using momentum conservation, h⇠2i[21] = �h⇠3i[31] +O(m2
f ), we have,

mfx =
[23][31]

[12]
+O(m2

f ), (28)

resulting in,

x2mf h12i =
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[23]3[31]

[12]2

�
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[12]2
0

1

CCA+O(mf ), (29)
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Particles Coupling Vertex High-Energy Limit
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✓
h12ih23i
h31i +

[12][23]
[31]

◆
,

� M2
Z

M2
W

✓
h23ih31i
h12i +
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◆

TABLE IV. Standard Model Weak Boson Sector Vertices along with their high-energy limit. The superscript in the first
column gives the helicity of the massless particles. The terms in the high-energy limit with a ratio of masses are Goldstone
boson interactions. In some cases, the masses in the ratio canceled. See sections II, III and IV for further details. The helicity
signatures of the individual terms listed in the high-energy limit can be recovered using the rules described at the end of App. B.



Conclusions
• We have constructed the complete set of 3-point amplitudes for the SM.


• We have only used the Poincare and little group symmetries.


• We have done this without the use of fields, Feynman rules or gauges.


• We have found the high-energy behavior of these massive vertices and 
showed that they agreed with the well-known massless vertices.


• The massive constructive theory is still not complete.  There is still much to 
do.  For example:


• Work out all the 4-point “contact” terms of the SM.


• Work out a complete consistent BCFW-like recursion relation for any n-
point amplitude.


• Work out a complete set of rules giving any loop contribution in terms of 
the 3-point amplitudes.


