Testing supergravity models with heavy scalars at the HL-LHC and HE-LHC and the gravitino decay constraints

Amin Aboubrahim

Department of Physics Northeastern University Boston, MA

Phenomenology Symposium 2018 University of Pittsburgh, PA May 7-9, 2018

イロト イポト イヨト イヨト 二日

Table of Contents

1 Introduction

- 2 Chargino Coannihilation in SUGRA Models
- Heavy scalars and SUSY discovery at HL-LHC
- Gluinos and Electroweakinos at the HL-LHC vs. HE-LHC

5 Conclusion

イロト 不得 とくほ とくほ とうほう

Introduction

Chargino Coannihilation in SUGRA Models Heavy scalars and SUSY discovery at HL-LHC Gluinos and Electroweakinos at the HL-LHC vs. HE-LHC Conclusion

Introduction

- In models where the LSP is bino-like, coannihilation is needed to deplete the relic density to $\Omega h^2 = 0.1197 \pm 0.0022$ [Planck Collaboration, arXiv:1502.01589 [astro-ph.CO]]
- \bullet Coannihilation requires the mass gap between the LSP and the NLSP be small (typically $\lesssim 20~{\rm GeV})$
- Relic density is controlled by the ratio

$$\delta_i = \frac{n_i^{eq}}{n^{eq}} = \frac{g_i(1+\Delta_i)^{3/2}e^{-\Delta_i x}}{\sum_j g_j(1+\Delta_j)^{3/2}e^{-\Delta_j x}},$$

where $\Delta_i = (m_i - m_1)/m_1$, g_i are the degrees of freedom of χ_i and $x = m_1/T$. The relic density involved in the integral

$$J_{x_f} = \int_{x_f}^{\infty} x^{-2} \langle \sigma_{eff} v
angle dx.$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

SUGRA models

- In previous works, stop¹, gluino² and stau³ coannihilation have been discussed.
 ¹[B. Kaufman, P. Nath, B. Nelson, A. Spisak, arXiv:1509.02530v2 [hep-ph]]
 ²[P. Nath, A. Spisak, arXiv:1603.04854v2 [hep-ph]]
 ³[A. Aboubrahim, P. Nath, and A. Spisak, arXiv:1704.04669 [hep-ph]]
- Here we extend the study to chargino coannihilation models. To achieve chargino coannihilation we need non-universal SUGRA:
 m₀, A₀, m₁, m₂, m₃, tan β, sign(μ)
- For the case of heavy gluinos and lighter electroweakinos one has m₃ >> m₁ > m₂ while for electroweakinos and gluinos with masses O(1) TeV one has m₁ > m₂ >> m₃

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

Advantages of heavy scalars?

- Scalar masses in the 50-100 TeV range produce unification of gauge coupling constants, consistent with experimental data at low scale
- Decay of the gravitinos with mass order *m*₀ happens before the Big Bang Nucleosynthesis (BBN)
- SUGRA models with scalar masses in the range 50-100 TeV have several other attractive features such as they help alleviate the SUSY CP problem and help suppress proton decay from baryon and lepton number violating dimension five operators

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

Sparticle mass hierarchies

- With a small available mass gap between the LSP and the NLSP, decay products are soft. Switch on ISR and FSR
- An exhibition of the sparticle mass hierarchy for a representative model point. Left panel: entire mass spectrum. Right panel: lighter gauginos and the Higgs boson

[A. Aboubrahim, P. Nath, arXiv:1708.02830 [hep-ph]]

Amin Aboubrahim SUGRA models with heavy scalars

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

 Table of benchmark points used in the analysis of chargino coannihilation, satisfying the Higgs mass and relic density constraints

Model	m_0	A_0	m_1	<i>m</i> 2	<i>m</i> 3	aneta
(a)	70760	141410	544	481	983	45
(b)	77710	155593	503	426	1645	11
(c)	92390	183892	557	474	1441	18
(d)	82900	165862	539	466	1275	6
(e)	63057	126110	504	414	1472	28
(f)	67248	134496	543	446	1482	30
(g)	54981	109990	521	419	1388	34
(h)	86618	172526	610	497	1369	23
(i)	58619	117055	550	425	1204	25
(j)	74199	148386	620	487	1000	27

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

э

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

Three signal regions: zero, single and two lepton channels along with jets and missing transverse energy in the final state

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー わらゆ

- Searches based on two categories of final states:
 - Zero leptons, jets and missing transverse energy
 - Single and two light leptons along with jets
- The SUSY production cross section for all models is dominated by the production of the neutralino-chargino pair, $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$
- The decay channels in nearly every model point:
 - $\operatorname{Br}(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 q \bar{q}) \sim 0.75$ and $\operatorname{Br}(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 \ell \bar{\ell}) \sim 0.25$
 - $\mathsf{Br}(\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 q_i \bar{q}_j) \sim 0.67 \text{ and } \mathsf{Br}(\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 \ell^{\pm} \nu_{\ell}) \sim 0.33$

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

イロト 不得 トイヨト イヨト ニヨー

Estimated integrated luminosities for a 5σ discovery

Points (a), (b) and (c) have already been excluded

Model	Leading SR	\mathcal{L} (fb $^{-1}$)	Sub-leading SR	\mathcal{L} (fb $^{-1}$)
(g)	0ℓ4 <i>j</i> -A	63 ± 8	0ℓ4 <i>j</i> -B	147 ± 19
(e)	0ℓ4 <i>j</i> -A	74 ± 10	0 <i>ℓ</i> 2 <i>j</i> -A	83 ± 9
(a)	1ℓ2 <i>j</i> -C	80 ± 9	0ℓ2 <i>j</i> -A	86 ± 9
(b)	2ℓ1 <i>j</i> -SF-C	93 ± 16	0ℓ2 <i>j</i> -A	150 ± 17
(c)	0ℓ2 <i>j</i> -A	114 ± 13	0ℓ4 <i>j</i> -A	749 ± 84
(f)	2ℓ1 <i>j-</i> SF-C	126 ± 22	0 <i>ℓ</i> 2 <i>j</i> -A	173 ± 19
(d)	0ℓ2 <i>j</i> -A	174 ± 19	2ℓ1 <i>j</i> -SF-C	243 ± 43
(h)	0ℓ4 <i>j</i> -A	337 ± 44	0ℓ2 <i>j</i> -A	558 ± 63
(i)	2ℓ1 <i>j</i> -SF-C	504 ± 89	2ℓ1 <i>j</i> -SF-B	616 ± 109
(j)	0 <i>ℓ2j</i> -A	771 ± 87	2ℓ1 <i>j</i> -SF-B	2190 ± 387

Sparticle spectrum and benchmarks Electroweakino production and signal definitions Signature Analysis and Results

• A gravitino has many decay final states to the MSSM states which include the dominant two body decays

$$ilde{G}
ightarrow ilde{g} g, \; ilde{\chi}_1^\pm W^\mp, \; ilde{\chi}_1^0 \gamma, \; ilde{\chi}_1^0 Z$$

• At a reheat temperature $T_R \sim 10^9$ GeV, the contribution from non-thermal neutralinos to the relic density is negligible

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

イロト 不得 トイヨト イヨト ニヨー

The 28 TeV collider: HE-LHC

- The High Energy LHC (HE-LHC) has been recently proposed as the next generation *pp* collider at CERN
- Uses the existing LHC ring with 16 T FCC magnets replacing the current 8.3 T ones
- $\bullet\,$ Center-of-mass energy boosted to 28 TeV with a design luminosity \sim 4 times that of the HL-LHC
- This set up necessarily means that a larger part of the parameter space of supersymmetric models beyond the reach of the 14 TeV collider will be probed

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_{0}^{0}\tilde{\chi}_{1}^{\pm}$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

- \bullet Production cross-section of $\tilde{g}\tilde{g}$ at 28 TeV is $\sim 20-30$ times that at 14 TeV
- $\bullet\,$ An increase by ~ 2.5 folds is seen for the case of electroweakino production

Amin Aboubrahim SUGRA models with heavy scalars

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_2^0\tilde{\chi}_1^\pm$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

• The ten benchmark points satisfying the Higgs boson mass and relic density constraints

Model	<i>m</i> 0	A ₀	m_1	<i>m</i> ₂	<i>m</i> 3	aneta
(a)	13998	30376	2155	1249	556	28
(b)	9528	22200	2281	1231	573	34
(c)	9288	20898	2471	1411	620	40
(d)	28175	62830	2634	1541	751	41
(e)	20335	44737	2459	1133	550	24
(f)	22648	50505	2700	1585	675	15
(g)	16520	37224	385	274	1685	16
(h)	48647	106537	537	432	2583	26
(i)	14266	-28965	371	224	2984	20
(j)	41106	108520	687	599	7454	42

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

SUGRA benchmarks (a)-(f) chosen with gluino and electroweakino masses $\mathcal{O}(1)$ TeV while points (g)-(j) have heavier gluinos and lighter electroweakinos

[A. Aboubrahim, P. Nath, arXiv:1804.08642 [hep-ph]]

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

- Signal regions (SR) used in this analysis correspond to the single lepton, two lepton (same flavor opposite sign leptons, SFOS) and the three lepton channel
- Each SR has two classes of selection criteria, one targeting final states from gluino decay and the other suitable for soft final states from electroweakino pair decay
- Dominant decay channels of the gluino: $\begin{array}{l} \mathsf{Br}_{[\mathrm{b-f}]}(\tilde{g} \rightarrow \tilde{\chi}_{1}^{0}q\bar{q}) \sim (0.33-0.73) \text{ and} \\ \mathsf{Br}_{[\mathrm{f-e}]}(\tilde{g} \rightarrow \tilde{\chi}_{1}^{\pm}q_{i}\bar{q}_{j}) \sim (0.20-0.63), \\ \mathsf{Br}_{[\mathrm{e-a,d,f}]}(\tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0}W^{\pm}) \sim (0.23-1.0) \end{array}$
- Dominant decay channels of the electroweakinos:

$$\begin{array}{l} \mathsf{Br}_{[i-j]}(\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 q \bar{q}) \sim (0.68 - 0.94), \\ \mathsf{Br}_{[j-i]}(\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 \ell \bar{\ell}) \sim (0.06 - 0.32) \end{array}$$

Chargino decay modes are similar to previous analysis

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

Integrated luminosities at HL-LHC vs HE-LHC

Amin Aboubrahim SUGRA models with heavy scalars

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_2^0\tilde{\chi}_1^\pm$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

ats Count per 0.2 VGeV

10

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ at 14 and 28 TeV Particle spectrum for benchmarks Signal region analysis and results

The discovery of points (a), (g), (h) and (i) would require a run of HL-LHC for ~ 5 yr for (a) and (g), and ~ 8 yr for (h) and (i). The run period for discovery of these at HE-LHC will be ~ 2 weeks for (a), ~ 4 months for (g), ~ 1 yr for (h) and ~ 1.5 yr for (i) using the projection that HE-LHC will collect 820 fb⁻¹ of data per year

Conclusion

- The parameter space satisfying the Higgs boson mass constraint mostly gives a neutralino which is bino-like. Hence coannihilation is needed to achieve the correct relic density
- Because of small mass gaps between the LSP and NLSP, supersymmetric signals arising from chargino coannihilation regions are hard to detect at colliders since the decay products are soft
- We have shown that such models can be tested by the end of LHC-II and at HL-LHC which is expected to reach an integrated luminosity of 3000 fb⁻¹
- It is found that SUSY discovery at HE-LHC would take a much shorter time reducing the run period of 5-8 yr at HL-LHC to a run period of few weeks to ~ 1.5 yr at HE-LHC
- HE-LHC is a powerful tool for the discovery of supersymmetry and deserves serious consideration

BACKUP SLIDES

Amin Aboubrahim SUGRA models with heavy scalars

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Supergravity Models with 50-100 TeV Scalars, SUSY Discovery at the LHC and Gravitino Decay Constraints

• Signal region based on zero leptons, jets and missing transverse energy in the final state

Vetos

A veto on muons and electrons with leading jets required to have $p_T > 40$ GeV and sub-leading jets have $p_T > 20$ GeV.

Missing Energy

Pre-selection cut on the missing energy is applied: $E_T^{\text{miss}} > 100 \text{ GeV}.$

•
$$m_{\rm eff} = \sum_i (p_T^{\rm jets})_i + E_T^{\rm miss} + \sum_i (p_T^\ell)_i$$

- $m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{2(p_{\mathrm{T}} E_{\mathrm{T}}^{\mathrm{miss}} \mathbf{p}_{\mathrm{T}} \cdot \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})}$
- $m_{\mathrm{T2}} = \min \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}(\ell_1), \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}(\ell_2), \mathbf{p}_{\mathrm{T}}^{\mathsf{miss}} \mathbf{q}_{\mathrm{T}}) \right) \right]$

- In the single lepton channel, one prompt light lepton (electron or muon) is selected such that $|\eta|<$ 1.4 for electrons and $|\eta|<$ 1.2 for muons
- We require that $\Delta \phi(\vec{\ell}, \vec{p}_T^{miss}) > 1.5$ rad to avoid misidentification of \vec{p}_T^{miss} with leptons
- Two lepton final state: 2ℓ -SF (same flavor opposite sign) and 2ℓ -DF (different flavor opposite sign)
- 2 ℓ -DFOS arises from the decay of a $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ pair
- Events containing two leptons are selected such that the leading and the sub-leading lepton transverse momenta must be $p_T^\ell > 15$ GeV and 10 GeV, respectively

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The selection criteria used for the zero lepton channel

Requirement	0ℓ <i>nj</i>					
	0ℓ2 <i>j</i> -A	0 <i>ℓ2j-</i> B	0ℓ2 <i>j</i> -C	0ℓ4 <i>j</i> -A	0ℓ4 <i>j</i> -B	0ℓ4 <i>j</i> -C
N(jets)	≥ 2	≥ 2	≥ 2	\geq 4	\geq 4	\geq 4
$p_T(j_1)$ (GeV) $<$	100	100	100	100	100	100
$p_T(j_2) (GeV) <$	60	60	60	80	80	80
$p_T(j_4)$ (GeV) $<$				50	50	50
$E_T^{ m miss}({ m GeV}) <$	250	250	250	400	400	400
$\Delta \phi(jet_1, E_T^{miss})(rad) >$	1.5	1.5	1.5	2.5	2.5	2.5
$\min[\Delta \phi(jet_{1-2}, E_T^{miss})] \;(rad) < 0$	2.5	2.5	2.5			
$m_{ m T2}({ m GeV})>$	100	100	100			
$m_{ m T2}({\sf GeV}) <$	400	400	400			
$m_{jj}({ m GeV}) >$	50	50	50			
$m_{jj}({ m GeV}) <$	700	700	700			
$m_T^{\min}(jet_{1-2}, E_T^{miss}) \; (GeV) <$				120	120	120
$m_{ m eff}({ m GeV})>$				250	250	250
$m_{ m eff}({ m GeV}) <$				350	350	350
$E_T^{ m miss}/\sqrt{H_T}({ m GeV}^{1/2})>$	1	1	1			
$E_T^{ m miss}/\sqrt{H_T}({ m GeV}^{1/2}) < 1$	15	15	13			
$H_T(GeV) <$	115	120	120	155	160	165

26/35

The selection criteria used for the single lepton channel

Requirement		1 <i>l</i> 2j	
	1ℓ2 <i>j</i> -A	1ℓ2 <i>j</i> -B	1ℓ2 <i>j</i> -C
N(jets)	≥ 2	≥ 2	≥ 2
$p_T(j_1) (\text{GeV}) <$	60	70	80
$p_T(j_2)$ (GeV) <	50	50	50
$Leading p^\ell_{\mathcal{T}} (GeV) >$	10	10	10
$Leading p_{\mathcal{T}}^{\acute{\ell}}(GeV) <$	40	40	40
m_T^ℓ (GeV) <	60	60	60
$m_T^{\min}(jet_{1-2}, E_T^{miss}) \; (GeV) <$	140	140	140
$m_{ m eff}~(m GeV)>$	180	180	180
$m_{ m eff}~({ m GeV}) <$	240	240	240
$E_T^{ m miss}(m GeV) <$	250	250	250
$\Delta \phi(jet_1, E_T^{miss})(rad) >$	2.5	2.5	2.5
$H_T(GeV) <$	105	105	105

The selection criteria used for the two lepton channel (SFOS and DFOS)

		2ℓ1 <i>j</i> -SF		2ℓ1 <i>j</i> -DF			
Requirement	2ℓ1 <i>j</i> -SF-A	2ℓ1 <i>j</i> -SF-B	2ℓ1 <i>j</i> -SF-C	2ℓ1 <i>j</i> -DF-A	2ℓ1 <i>j</i> -DF-B	2ℓ1 <i>j</i> -DF-C	
$E_T^{\rm miss}$ (GeV) <	150	150	150	150	150	150	
m_T^ℓ (GeV) $<$	80	80	80	80	80	80	
$\Delta \phi(j_1, E_T^{\text{miss}}) \text{ (rad)} >$	2.7	2.7	2.7	2.7	2.7	2.7	
$\Delta R_{\ell\ell}$ (rad) <	1.0	1.0	1.0	3.0	3.0	3.0	
$m_{\ell\ell}$ (GeV) $<$	50	50	50	40	40	40	
$E_T^{\rm miss}/H_T >$	0.7	0.7	0.7	0.7	0.7	0.7	
$m_{\rm eff}~({\rm GeV}) >$	160	160	160	160	160	160	
$m_{ m eff}~({ m GeV}) <$	260	270	280	260	270	280	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• The neutralino relic density arising from the decay of the gravitino is given by

$$\Omega^G_{\chi^0_1} h^2 = \sum_{i=1}^3 \omega_i \, g_i^2 \left(1 + \frac{m_i^2}{3m_{\tilde{G}}^2} \right) \ln \left(\frac{k_i}{g_i} \right) \left(\frac{m_{\tilde{\chi}^0_1}}{100 \, \mathrm{GeV}} \right) \left(\frac{T_R}{10^{10} \, \mathrm{GeV}} \right),$$

where $\omega_i (i = 1, 2, 3) = (0.018, 0.044, 0.177)$ and

$$\frac{m_i(T_R)}{m_i(M_G)} = \frac{g_i^2(T_R)}{g_i^2(M_G)},$$

$$\frac{1}{g_i^2(T_R)} = \frac{1}{g_i^2(M_G)} + \frac{\beta_i^{(i)}}{8\pi^2} \ln\left(\frac{M_G}{T_R}\right)$$

Here M_G is the GUT scale, $g_i(T_R)$, $m_i(T_R)$ are the gauge couplings and the gaugino masses at T_R , and $g_i(M_G)$, $m_i(M_G)$ are their GUT values, $\beta_i^{(1)}$ are the one loop evolution coefficients given by $\beta_i^{(1)}(i = 1, 2, 3) = (11, 1, -3)$

Branching ratios of the leading decay channels, the total two-body decay width and the lifetime of the gravitino for the benchmarks

Model	$Br(\tilde{G} o \tilde{g}g)$	${\sf Br}(\tilde{G} o \tilde{\chi}_1^{\pm} W^{\mp})$	${\sf Br}(ilde{G} o ilde{\chi}_1^0\gamma)$	${\sf Br}(ilde{G} o ilde{\chi}_1^0 Z)$	$\Gamma_{\tilde{G}}^{\text{two-body}} imes 10^{-24}$ (GeV)	Lifetime (s)
(a)	0.598	0.150	0.040	0.035	7.9	0.083
(b)	0.619	0.156	0.060	0.018	10.1	0.065
(c)	0.619	0.155	0.058	0.020	17.0	0.039
(d)	0.620	0.156	0.057	0.021	12.3	0.053
(e)	0.616	0.155	0.044	0.033	5.4	0.121
(f)	0.616	0.155	0.043	0.034	6.6	0.099
(g)	0.614	0.155	0.041	0.036	3.6	0.183
(h)	0.618	0.155	0.038	0.039	14.1	0.047
(i)	0.617	0.155	0.041	0.037	4.4	0.151
(j)	0.617	0.155	0.036	0.042	8.9	0.074

イロト イポト イヨト イヨト

э.

A D A A B A A B A A B A

э

Supersymmetry at a 28 TeV hadron collider: The HE-LHC

イロト 不得 とくき とくき とうきょう

The selection criteria used for the single lepton channel

	S	R 1ℓ-com	ıp		SR 1ℓ-ĝ	
Requirement	SR-A	SR-B	SR-C	SR-A	SR-B	SR-C
$N_{ m jets} \ge$	2	2	2	2	2	2
$E_T^{ m miss}$ (GeV) >				150	150	150
H_T (GeV)	< 250	< 250	< 250	> 600	> 600	> 600
$E_T^{ m miss}/\sqrt{H_T}~({ m GeV^{1/2}})>$	7	7	7	10	10	10
$m_{ m eff}$ (GeV)	< 350	< 350	< 350	> 800	> 800	> 800
R >	0.6	0.7	0.85	0.7	0.8	0.85
H ₂₀ <				0.5	0.5	0.5
$p_T(j_2)$ (GeV) >				110	110	110
$p_T(j_3)$ (GeV) >				80	80	80
$p_T(j_4)$ (GeV) >				50	50	50
m_T^ℓ (GeV) $>$				100	100	100
$m_T^{ m min}(j_{1-2}, E_T^{ m miss}) \; ({ m GeV}) >$				200	200	200

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

troduction

Chargino Coannihilation in SUGRA Models Heavy scalars and SUSY discovery at HL-LHC Gluinos and Electroweakinos at the HL-LHC vs. HE-LHC Conclusion

	2ℓ-	SFOS-co	mp	2	ℓ-SFOS-	ĝ
Requirement	SR-A	SR-B	SR-C	SR-A	SR-B	SR-C
$N_{\rm jets} \ge$	2	2	2	2	2	2
$E_T^{\rm miss}$ (GeV)	< 150	< 150	< 150	> 150	> 150	> 150
m_T^ℓ (GeV)	< 80	< 80	< 80	> 150	> 180	> 200
$p_T(j_1)$ (GeV)	< 90	< 90	< 90	> 120	> 120	> 120
$p_T(j_2)$ (GeV)	< 48	< 48	< 48	> 80	> 80	> 80
R >	0.7	0.7	0.7	0.8	0.8	0.8
A <	0.4	0.4	0.4			
$m_{\ell\ell}~({ m GeV}) <$	25	25	25		Z-veto	
$H_T(GeV)$	< 190	< 190	< 190	> 500	> 500	> 500
$m_{ m eff}~({ m GeV})>$	180	180	180	900	900	900
$m_{ m eff}~({ m GeV}) <$	400	400	400			
$\Delta R_{\ell\ell}$ (rad) $<$	0.4	1.0	2.5			
$M_{T_2}^{ m dijet}$ (GeV) $>$				700	700	700
$M_{T_2}^{ m dilepton}$ (GeV) >				600	600	600

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

34/35

	S	R 3ℓ-com	р		SR 3ℓ-ĝ	
Requirement	SR-A	SR-B	SR-C	SR-A	SR-B	SR-C
$E_T^{\rm miss}$ (GeV) >				150	150	150
$m_T^{ m min}$ (GeV) $>$				100	100	100
$p_T^{\ell\ell\ell}$ (GeV) $<$	60	60	60	150	150	150
R >	0.45	0.5	0.55	0.55	0.6	0.65
$m_{ m eff}$ (GeV)	< 500	< 500	< 500	> 650	> 650	> 650
$M_{\mathcal{T}_2}^{ m dijet}$ (GeV) $>$	200	200	200			

The selection criteria used for the three-lepton signal region. The SR 3 ℓ -comp targets soft final states resulting from the electroweakino production and 3ℓ - \tilde{g} targets final states from gluino production. A Z-veto is applied to both SRs.

・ロッ ・行う ・ モッ・ ・ ヨー