Testing supergravity models with heavy scalars at the HL-LHC and HE-LHC and the gravitino decay constraints

Amin Aboubrahim

Department of Physics Northeastern University Boston, MA

Phenomenology Symposium 2018 University of Pittsburgh, PA May 7-9, 2018

イロメ イ母メ イミメ イミメー 毛

1/35

 QQ

Table of Contents

1 [Introduction](#page-2-0)

- 2 [Chargino Coannihilation in SUGRA Models](#page-3-0)
- 3 [Heavy scalars and SUSY discovery at HL-LHC](#page-4-0)
- 4 [Gluinos and Electroweakinos at the HL-LHC vs. HE-LHC](#page-12-0)

5 [Conclusion](#page-20-0)

イロメ イ母メ イミメ イヨメー ヨー

2/35

 2990

[Introduction](#page-2-0)

[Chargino Coannihilation in SUGRA Models](#page-3-0) [Heavy scalars and SUSY discovery at HL-LHC](#page-4-0) Gluinos and Electroweakinos at the $HI -I$ HC vs. [Conclusion](#page-20-0)

Introduction

- In models where the LSP is bino-like, coannihilation is needed to deplete the relic density to $\Omega h^2 = 0.1197 \pm 0.0022$ [Planck Collaboration, arXiv:1502.01589 [astro-ph.CO]]
- Coannihilation requires the mass gap between the LSP and the NLSP be small (typically \leq 20 GeV)
- Relic density is controlled by the ratio

$$
\delta_i = \frac{n_i^{eq}}{n^{eq}} = \frac{g_i (1 + \Delta_i)^{3/2} e^{-\Delta_i x}}{\sum_j g_j (1 + \Delta_j)^{3/2} e^{-\Delta_j x}},
$$

where $\Delta_i = (m_i - m_1)/m_1$, g_i are the degrees of freedom of χ_i and $x = m_1/T$. The relic density involved in the integral

$$
J_{x_f}=\int_{x_f}^\infty x^{-2}\langle\sigma_{\text{eff}}v\rangle dx.
$$

イロメ イ母メ イミメ イヨメー ヨー

3/35

 QQ

SUGRA models

- In previous works, stop 1 , gluino 2 and stau 3 coannihilation have been discussed. 1 [B. Kaufman, P. Nath, B. Nelson, A. Spisak, arXiv:1509.02530v2 [hep-ph]] 2 [P. Nath, A. Spisak, arXiv:1603.04854v2 [hep-ph]] 3 [A. Aboubrahim, P. Nath, and A. Spisak, arXiv:1704.04669 [hep-ph]]
- Here we extend the study to chargino coannihilation models. To achieve chargino coannihilation we need non-universal SUGRA: m_0 , A_0 , m_1 , m_2 , m_3 , tan β , sign (μ)
- For the case of heavy gluinos and lighter electroweakinos one has $m_3 >> m_1 > m_2$ while for electroweakinos and gluinos with masses $\mathcal{O}(1)$ TeV one has $m_1 > m_2 >> m_3$

4/35

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

イロメ イ母メ イヨメ イヨメー ヨー

5/35

Advantages of heavy scalars?

- Scalar masses in the 50-100 TeV range produce unification of gauge coupling constants, consistent with experimental data at low scale
- \bullet Decay of the gravitinos with mass order m_0 happens before the Big Bang Nucleosynthesis (BBN)
- SUGRA models with scalar masses in the range 50-100 TeV have several other attractive features such as they help alleviate the SUSY CP problem and help suppress proton decay from baryon and lepton number violating dimension five operators

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

Sparticle mass hierarchies

- With a small available mass gap between the LSP and the NLSP, decay products are soft. Switch on ISR and FSR
- An exhibition of the sparticle mass hierarchy for a representative model point. Left panel: entire mass spectrum. Right panel: lighter gauginos and the Higgs boson

[A. Aboubrahim, P. Nath, arXiv:1708.02830 [hep-ph]]

Amin Aboubrahim [SUGRA models with heavy scalars](#page-0-0)

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

7/35

 2990

Table of benchmark points used in the analysis of chargino coannihilation, satisfying the Higgs mass and relic density constraints

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

8/35

 290

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

9/35

Three signal regions: zero, single and two lepton channels along with jets and missing transverse energy in the final state

A D P A E A E F A E F A E F

10/35

- Searches based on two categories of final states:
	- Zero leptons, jets and missing transverse energy
	- Single and two light leptons along with jets
- The SUSY production cross section for all models is dominated by the production of the neutralino-chargino pair, $\tilde\chi_2^0\tilde\chi_1^\pm$
- The decay channels in nearly every model point:
	- ${\sf Br}(\tilde\chi_2^0\to\tilde\chi_1^0 q\bar q)\sim$ 0.75 and ${\sf Br}(\tilde\chi_2^0\to\tilde\chi_1^0 \ell\bar\ell)\sim$ 0.25
	- ${\sf Br}(\tilde\chi_1^\pm\to\tilde\chi_1^0q_i\bar q_j)\sim 0.67$ and ${\sf Br}(\tilde\chi_1^\pm\to\tilde\chi_1^0\ell^\pm\nu_\ell)\sim 0.33$

J.

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

11/35

 QQ

Estimated integrated luminosities for a 5σ discovery

Points (a), (b) and (c) have already been excluded

[Sparticle spectrum and benchmarks](#page-5-0) [Electroweakino production and signal definitions](#page-8-0) [Signature Analysis and Results](#page-10-0)

A gravitino has many decay final states to the MSSM states which include the dominant two body decays

$$
\tilde{\mathsf{G}}\rightarrow\tilde{\mathsf{g}}\mathsf{g},\;\tilde{\chi}^{\pm}_{1}\mathsf{W}^{\mp},\;\tilde{\chi}^{0}_{1}\gamma,\;\tilde{\chi}^{0}_{1}Z
$$

 \bullet At a reheat temperature $T_R \sim 10^9$ GeV, the contribution from non-thermal neutralinos to the relic density is negligible

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2 \tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

A D P A E A E L A E L A E L A L A L

13/35

The 28 TeV collider: HE-LHC

- The High Energy LHC (HE-LHC) has been recently proposed as the next generation pp collider at CERN
- Uses the existing LHC ring with 16 T FCC magnets replacing the current 8.3 T ones
- Center-of-mass energy boosted to 28 TeV with a design luminosity \sim 4 times that of the HL-LHC
- This set up necessarily means that a larger part of the parameter space of supersymmetric models beyond the reach of the 14 TeV collider will be probed

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2 \tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

- • Production cross-section of $\tilde{g}\tilde{g}$ at 28 TeV is \sim 20 – 30 times that at 14 TeV
- \bullet An increase by \sim 2.5 folds is seen for the case of electroweakino production

Amin Aboubrahim [SUGRA models with heavy scalars](#page-0-0)

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2\tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

 $\mathbf{E} = \mathbf{A} \in \mathbf{F} \times \mathbf{A} \in \mathbf{F} \times \mathbf{A} \oplus \mathbf{F} \times \mathbf{A} \oplus \mathbf{F}$

15/35

 298

• The ten benchmark points satisfying the Higgs boson mass and relic density constraints

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2\tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

SUGRA benchmarks (a)-(f) chosen with gluino and electroweakino masses $\mathcal{O}(1)$ TeV while points (g)-(j) have heavier gluinos and lighter electroweakinos

[A. Aboubrahim, P. Nath, arXiv:1804.08642 [hep-ph]]

Amin Aboubrahim [SUGRA models with heavy scalars](#page-0-0)

- • Signal regions (SR) used in this analysis correspond to the single lepton, two lepton (same flavor opposite sign leptons, SFOS) and the three lepton channel
- Each SR has two classes of selection criteria, one targeting final states from gluino decay and the other suitable for soft final states from electroweakino pair decay
- Dominant decay channels of the gluino:

$$
Br_{[b-f]}(\tilde{g} \rightarrow \tilde{\chi}_1^0 q \bar{q}) \sim (0.33 - 0.73)
$$
 and
\n
$$
Br_{[f-e]}(\tilde{g} \rightarrow \tilde{\chi}_1^{\pm} q_i \bar{q}_j) \sim (0.20 - 0.63),
$$

\n
$$
Br_{[e-a,d,f]}(\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 W^{\pm}) \sim (0.23 - 1.0)
$$

Dominant decay channels of the electroweakinos:

$$
\begin{array}{l}Br_{[i-j]}(\tilde{\chi}^0_2\rightarrow\tilde{\chi}^0_1 q\bar{q})\sim(0.68-0.94),\\Br_{[j-i]}(\tilde{\chi}^0_2\rightarrow\tilde{\chi}^0_1\ell\bar{\ell})\sim(0.06-0.32)\end{array}
$$

17/35 Chargino decay modes are similar to pr[evi](#page-15-0)[ou](#page-17-0)[s](#page-15-0) [an](#page-16-0)[a](#page-17-0)[l](#page-15-0)[y](#page-16-0)[si](#page-19-0)[s](#page-20-0)

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2 \tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

18/35

 QQ

Integrated luminosities at HL-LHC vs HE-LHC

Amin Aboubrahim [SUGRA models with heavy scalars](#page-0-0)

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2 \tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

 $\sqrt{8}$ = 28 TeV
L = 1500 fb⁻¹ $\frac{m \text{w} z + \text{jets}}{n}$

2000

 $\overline{\blacksquare}$ WW272 \blacksquare \blacksquare \blacksquare \blacksquare

 $\overline{}$ is a total - Signal e

<mark>است تەلەس</mark>

2500

3000

Þ

 QQ

 $m_{\rm eff}$ (GeV)

S and \sqrt{B} in the 1 ℓ +iets SR

[Introduction](#page-2-0) [Chargino Coannihilation in SUGRA Models](#page-3-0) [Heavy scalars and SUSY discovery at HL-LHC](#page-4-0) [Gluinos and Electroweakinos at the HL-LHC vs. HE-LHC](#page-12-0) [Conclusion](#page-20-0)

イロメ イ押メ イヨメ イヨメ

19/35

ts Count per 30 GeV

 $\overline{16}$

500

1000 1500

Production of $\tilde{g}\tilde{g}$ and $\tilde{\chi}^0_2 \tilde{\chi}^\pm_1$ [at 14 and 28 TeV](#page-13-0)
[Particle spectrum for benchmarks](#page-14-0) [Signal region analysis and results](#page-16-0)

The discovery of points (a) , (g) , (h) and (i) would require a run of HL-LHC for \sim 5 yr for (a) and (g), and \sim 8 yr for (h) and (i). The run period for discovery of these at HE-LHC will be \sim 2 weeks for (a), \sim 4 months for (g), \sim 1 yr for (h) and \sim 1.5 yr for (i) using the projection that HE-LHC will collect 820 fb⁻¹ of data per year

Amin Aboubrahim [SUGRA models with heavy scalars](#page-0-0)

Conclusion

- The parameter space satisfying the Higgs boson mass constraint mostly gives a neutralino which is bino-like. Hence coannihilation is needed to achieve the correct relic density
- Because of small mass gaps between the LSP and NLSP, supersymmetric signals arising from chargino coannihilation regions are hard to detect at colliders since the decay products are soft
- We have shown that such models can be tested by the end of LHC-II and at HL-LHC which is expected to reach an integrated luminosity of 3000 fb $^{-1}$
- It is found that SUSY discovery at HE-LHC would take a much shorter time reducing the run period of 5-8 yr at HL-LHC to a run period of few weeks to \sim 1.5 yr at HE-LHC
- HE-LHC is a powerful tool for the discovery of supersymmetry and deserves serious consideration K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ │ 글 │ 298

21/35

BACKUP SLIDES

Amin Aboubrahim [SUGRA models with heavy scalars](#page-0-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

22/35

Supergravity Models with 50-100 TeV Scalars, SUSY Discovery at the LHC and Gravitino Decay Constraints

23/35

 209

• Signal region based on zero leptons, jets and missing transverse energy in the final state

Vetos

A veto on muons and electrons with leading jets required to have $p_{\mathcal{T}} > 40$ GeV and sub-leading jets have $p_{\mathcal{T}} > 20$ GeV.

Missing Energy

Pre-selection cut on the missing energy is applied: $E_T^{\text{miss}} > 100 \text{ GeV}.$

$$
\bullet \ \ m_{\text{eff}} = \sum_i (p_{\mathcal{T}}^{\text{jets}})_i + \mathcal{E}_{\mathcal{T}}^{\text{miss}} + \sum_i (p_{\mathcal{T}}^{\ell})_i
$$

- $m_\mathrm{T}(\mathbf p_\mathrm{T}, \mathbf p_\mathrm{T}^\mathrm{miss}) = \sqrt{2(\mathbf p_\mathrm{T}\,E_\mathrm{T}^\mathrm{miss} \mathbf p_\mathrm{T}\cdot\mathbf p_\mathrm{T}^\mathrm{miss})}$
- $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$ $m_{\rm T2} = \text{min}\left[\text{max}\left(m_{\rm T}(\mathbf{p}_{\rm T}(\ell_1),\mathbf{q}_{\rm T}),m_{\rm T}(\mathbf{p}_{\rm T}(\ell_2),\mathbf{p}_{\rm T}^{\rm miss}-\mathbf{q}_{\rm T})\right)\right]$

 $999 - 24/35$

- • In the single lepton channel, one prompt light lepton (electron or muon) is selected such that $|\eta| < 1.4$ for electrons and $|\eta| < 1.2$ for muons
- We require that $\Delta \phi(\vec{\ell},\vec{\rho}_\mathcal{T}^\text{miss}) > 1.5$ rad to avoid misidentification of $\vec{\rho}_{\mathcal{T}}^{\rm miss}$ with leptons
- \bullet Two lepton final state: 2 ℓ -SF (same flavor opposite sign) and 2ℓ -DF (different flavor opposite sign)
- 2 ℓ -DFOS arises from the decay of a $\tilde{\chi}^+_1 \tilde{\chi}^-_1$ pair
- Events containing two leptons are selected such that the leading and the sub-leading lepton transverse momenta must be $\rho_{\mathcal{T}}^{\ell} > 15$ GeV and 10 GeV, respectively

-
35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35 → 35/35

The selection criteria used for the zero lepton channel

26/35

The selection criteria used for the single lepton channel

4 ロ → 4 @ ▶ 4 로 ▶ 4 로 ▶ _ 로 _ ⊙ 9 Q 27/35

The selection criteria used for the two lepton channel (SFOS and DFOS)

4日 → 4日 → 4 目 → 4 目 → 1 → 9 Q → 28/35

• The neutralino relic density arising from the decay of the gravitino is given by

$$
\Omega_{\chi_1^0}^G h^2 = \sum_{i=1}^3 \omega_i g_i^2 \left(1 + \frac{m_i^2}{3m_{\tilde{G}}^2}\right) \ln\left(\frac{k_i}{g_i}\right) \left(\frac{m_{\tilde{\chi}_1^0}}{100 \text{ GeV}}\right) \left(\frac{T_R}{10^{10} \text{ GeV}}\right),
$$

where $\omega_i(i = 1, 2, 3) = (0.018, 0.044, 0.177)$ and

$$
\frac{m_i(T_R)}{m_i(M_G)} = \frac{g_i^2(T_R)}{g_i^2(M_G)},
$$
\n
$$
\frac{1}{g_i^2(T_R)} = \frac{1}{g_i^2(M_G)} + \frac{\beta_i^{(i)}}{8\pi^2} \ln\left(\frac{M_G}{T_R}\right)
$$

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ │ 볼 │ ◆ 9 Q ① | 29/35 Here M_G is the GUT scale, $g_i(T_R)$, $m_i(T_R)$ are the gauge couplings and the gaugino masses at T_R , and $g_i(M_G)$, $m_i(M_G)$ are their GUT values, $\beta^{(1)}_i$ $i_j^{(1)}$ are the one loop evolution coefficients given by $\beta_i^{(1)}$ $i_j^{(1)}$ $(i = 1, 2, 3) = (11, 1, -3)$

Branching ratios of the leading decay channels, the total two-body decay width and the lifetime of the gravitino for the benchmarks

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

30/35

 QQ

K ロ ト K 御 ト K 澄 ト K 澄 ト

31/35

÷,

 290

Supersymmetry at a 28 TeV hadron collider: The HE-LHC

メロメ メタメ メミメ メミメーミー

32/35

 QQ

The selection criteria used for the single lepton channel

4 ロ → 4 레 → 4 페 → 4 페 → 4 페 → 세 페 → 페 → 페 → 페 페 페 페 페 페 페 게 33/35

The selection criteria used for the three-lepton signal region. The S_{R} 3 ℓ -comp targets soft final states resulting from the electroweakino production and 3ℓ - \tilde{g} targets final states from gluino production. A Z-veto is applied to both SRs.

◆ロト→ 伊ト→ ミト→ ミト → ミー の Q Q → 35/35