Introduction

[2-3lep]

soft-lep]

[tai

PHENO 2018

Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

Sonia Carrà on behalf of the ATLAS collaboration

Università degli Studi di Milano - INFN Sezione di Milano

May 7-9, 2018

Outline

- LHC and the ATLAS detector
- motivation: beyond the Standard Model physics
- electroweak supersymmetic particles production
- searches considered:

Model	Signature	Link
gaugino and $\tilde{\ell}$ to $\tilde{\chi}^0$	2-3 leptons	[1803.02762]
gaugino and $\tilde{\ell}$ to $\tilde{\chi}^0$	soft leptons	[1712.08119]
gaugino to $\tilde{\chi}^0$	taus	[1708.07875]
gaugino to \tilde{G}	b-jets	[CONF-2017-081]

summary plots and conclusions

Large Hadron Collider

[ATLAS luminosity plot]

- Proton-proton collisions
- 2010-2012: Run 1 with $\sqrt{s} = 7 8$ TeV
- 2015-2018: Run 2 with $\sqrt{s} = 13$ TeV
- Energy and luminosity increased since Run1
- More collected data: $N_{events} = \sigma_{production} \times L$

Presented searches use the data collected by ATLAS in 2015-2016 \rightarrow Integrated luminosity after data quality: 36.1 fb^{-1}

ATLAS detector

[ATLAS event display]

[p_rmiss performance - 1802.08168]

Weakly interacting particles escaping the detector. Momentum conservation in the plane transverse to the beam \rightarrow missing transverse momentum due to the invisible particles.

 p_{τ}^{miss} defined as the negative vectorial sum of visible momenta

Beyond the Standard Model

Standard Model: not a complete theory, many open questions:

- dark matter nature
- Higgs mass sensitivity to GUT/Planck-mass physics

Supersymmetry (SUSY) can solve these problems.

[Credit: ESA/Planck collaboration]

SUSY particles production: strong production has larger cross section, but colored sparticles excluded up to 2 TeV.

Electroweak production can dominate SUSY production at the LHC if the masses of colored sparticles are larger.

Chargino (χ[±]) and neutralino (χ⁰) are mixed states of W,Z e h bosons superpartner(*wino*, *bino* e *higgsino*)

- Status mix and mass hierarchy are different depending on the model
- Pure higgsino status is also possible (\tilde{H})
- General gauge mediation (GGM) gauge-mediated symmetry breaking (GMSB) models consider also the gravitino (G̃)
- R-parity conservation
- LSP = lightest supersymmetric particle

Analysis strategy

- Considering a SUSY model, there are many Standard Model processes with the same signature (background processes)
- SUSY cross sections are very small compared to the SM ones
- Selecting a kinematic region with a good signal/background ratio \rightarrow signal region (SR)
- As example, plot shows the stransverse mass (m_{T2}), computed using 2 visible objects (leptons or jets) and missing transverse energy (E^{miss}_T)

[2-3lep]		

Chargino and slepton direct production

- 2 leptons (e or μ), no jets and large E_T^{miss}
- ${\widetilde \chi}^0
 ightarrow {\sf LSP}$ and stable
- SR with large m_{T2} and $m_{\ell\ell}$

[2-3lep]		

Chargino and slepton direct production

- s-electron and s-muon mass degenerate
- no excess observed

[2-3lep]		

Gauginos via sleptons

- 3 leptons (e or μ)
- SR with large $E_T^{miss},$ vetoing on leptons with $m_{\ell\ell}$ close to Z boson mass
- no excess observed

Introduction [2-3lep] [soft-lep] [taus] [b-jets] Conclusions

Gauginos via W/Z

- Different signature depending on W boson decay
- 2 leptons and jets
- 3 leptons

	[2-3lep]		
<u> </u>			

- No excess
- Combined exclusion limit

			[soft-lep]			
Ditrodu Gau p p	ction gino anc j $\tilde{\chi}_1^{\pm} W^*$ $\tilde{\chi}_2^{0} Z^*$ $0^3 \int_{0}^{2} Z^* (z^*)^{-1} dz$	$[2-3lep]$ $slepton$ $\begin{pmatrix} q \\ q \\ q \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \\ \ell \\ \ell \end{pmatrix} \xrightarrow{p}$ $bata$ $bata$	[soft-lep] with soft le	[taus] eptons	[b-jets] $-\tilde{\chi}_{4}^{0}$ $-\tilde{\chi}_{3}^{0}$ $-\tilde{\chi}_{2}^{0}$ $-\tilde{\chi}_{1}^{0}$	Conclusions $\tilde{1712.08119}$ $\tilde{\chi}_2^{\pm}$ pressed pectrum $\tilde{\chi}_1^{\pm}$
Events / 5 (0 ² vs = 13 TeV, 36. SR/I-m _i 0 ² 10	1 fb ⁻¹ W Total SM Fake/nonprompt $\widetilde{H}: m(\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{0}) = ($ $\widetilde{H}: m(\widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{1}^{0}) = ($	Diboson Others 110, 100) GeV	• $\tilde{\chi}_1^{\pm}$ and wino-bin	${\tilde \chi}^{\rm 0}_2$ are higgsin to states	o-bino or

- soft leptons (e or μ) and E_{τ}^{miss}
- Initial state radiation to boost the ۲ system
- Signal selection: $m_{\ell\ell} \in [1,60]$ GeV and large E_T^{miss}

10

20

30

40

50

1

10-1

0 0

Data / SM 2

60 m_{//} [GeV]

Introduction [2-3lep] [soft-lep]			
----------------------------------	--	--	--

Gaugino and slepton with soft leptons

[1712.08119]

- No significant excess observed in the SRs
- New limits on the SUSY particles masses → first higgsino result since LEP

[b-jets]

Gauginos to \tilde{G} with 3 b-jets [ATLAS-CONF-2017-081]

- GGM/GMSB model
- \tilde{G} is LSP, with negligible mass
- $\bullet\,$ At least 3 b-tagged jets, additional jets and E_T^{miss}
- No significant excess observed
- $\bullet\,$ Limits on the \tilde{H} cross section production

[soft-lep

taus

Summary plots

ATLAS electroweak SUSY searches summary plots

• $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ (wino), $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$ (wino) and $\tilde{\chi}_2^0 \tilde{\chi}_3^0$ (higgsino) pair production

• $\tilde{\chi}_1^+ \tilde{\chi}_1^-$, $\tilde{\chi}_1^\pm \tilde{\chi}_2^0$, $\tilde{\chi}^\pm \tilde{\chi}_1^0$ and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ pair production, higgsino case

[ATLAS Supersymmetry summary plots]

		Conclusions

Conclusions

- ATLAS SUSY electroweak searches, with different signatures, were presented
- In all the considered cases, no significant differences were observed between data and SM prediction
- Exclusion limits were place on the SUSY particles masses
- Run 1 limits were largely improved by the new analysis

		Conclusions

Additional material

		Conclusions

Gauginos with photons

[1802.03158]

- GGM/GMSB model
- \tilde{G} is LSP with negligible mass
- 2 photons (75 GeV) and large E_T^{miss}
- No excess observed

