Statistical Properties of Helical Magnetic Fields

Sayan Mandal

Department of Physics, Carnegie Mellon University

8th May, 2018

Small seed (primordial) fields can be amplified by various mechanisms.

What is the origin of these PMFs?

Generation mechanism affects the statistical properties.
Generation Mechanisms

Inflationary Magnetogenesis

- PMFs arise from vacuum fluctuations\(^a\) - very large correlation lengths.
- Involves the breaking of conformal symmetry.
- Scale invariant (or nearly) power spectrum.
- Typically involves couplings like \(R^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma}\) or \(f(\phi)F_{\mu\nu} F^{\mu\nu}\).

Phase Transition Magnetogenesis

- An out of equilibrium, first-order transition is typically needed.
- Violent bubble nucleation generates significant turbulence\(^a\).
- *Causal* processes\(^b\) - limited correlation lengths (\(H_\chi^{-1}\)).
- Two main phase transitions are:
 1. Electroweak Phase Transition (\(T \sim 100\) GeV)
 2. QCD Phase Transition (\(T \sim 150\) MeV)

There is Helicity!

- Generation mechanisms can involve significant parity (P) violation.
- This can lead to *helical* PMFs - the evolution is affected\(^2\).
- Helicity can grow with evolution\(^3\).
- Can help us understand phenomena like *Baryogenesis*.

Magnetic Helicity

This is given by

\[H = \int_V \mathbf{A} \cdot \mathbf{B} \, d^3r = \int_{\tilde{V}} \tilde{\mathbf{A}} \cdot \tilde{\mathbf{B}} \, d^3x \quad (1) \]

\(V \) denotes a closed volume with fully contained fields lines.

\(H \) is invariant under \(\mathbf{A} \rightarrow \mathbf{A} + \nabla \Lambda \) if \(\mathbf{B} \) vanishes at the boundaries.

The evolution of \(H \) is,

\[\frac{dH}{d\tau} = -2\tilde{\eta} \int_{\tilde{V}} \tilde{\mathbf{B}} \cdot (\nabla \times \tilde{\mathbf{B}}) \, d^3x \quad (2) \]

It is seen\(^4\) that:

- Partial magnetic helicity evolves to full helicity.
- Kinetic helicity is converted to magnetic helicity.

Motivation

- We study the evolution of correlation lengths (λ) of fields generated at inflation.
- Investigating how the *smoothed* fields are related to λ and the *realizability condition*.
- Making the *realizability condition* hold consistently for scale invariant fields.
- Based on arXiv:1804.01177.
Modeling Magnetic Fields

We work with the correlation function in k-space,

$$B_{ij}(r) \equiv \langle B_i(x)B_j(x + r) \rangle \quad \Rightarrow \quad \mathcal{F}_{ij}^{(B)}(k) = \int d^3 r \: e^{i k \cdot r} \: B_{ij}(r)$$ (3)

This gives the symmetric and helical parts,

$$\frac{\mathcal{F}_{ij}^{(B)}(k)}{(2\pi)^3} = P_{ij}(\hat{k}) \frac{E_M(k)}{4\pi k^2} + i\epsilon_{ijl}k_l \frac{H_M(k)}{8\pi k^2}$$ (4)

- Mean energy density: $\mathcal{E}_M = \int dk \: E_M(k)$
- Integral length scale: $\xi_M = (\int dk \: k^{-1} E_M(k)) / \mathcal{E}_M$
- Mean helicity density: $\mathcal{H}_M = \int dk \: H_M(k)$
The Realizability Condition

This relates the symmetric and helical components.

$$|\mathcal{H}_M| \leq 2\xi_M \mathcal{E}_M \Rightarrow |H_M(k)| \leq 2k^{-1}E_M(k) \quad (5)$$

For scale-invariant spectrum, at large length scales, $E_M \sim k^{-1}$. ξ_M is unbounded.

Then Helicity is divergent. One must have $E_M \sim k^4$ at superhorizon scales.

![Scale Invariant Spectrum](image)

Figure: Scale Invariant Spectrum.
We use the **Pencil Code** to study the evolution of $\mathcal{E}_M(t)$.

Figure: Magnetic (red) and kinetic (blue) energy spectra at early times. The green symbols denote the position of $k_\ast(t)$. Black symbols denote the location of the horizon wavenumber $k_{\text{hor}}(t)$.

$$k_\ast(t) \approx \xi_M(t)(\eta_{\text{turb}}t)^{-1/2}, \quad k_{\text{hor}}(t) = (ct)^{-1}$$

(6)
Figure: The late time evolution. We have the usual inverse cascade, with an increase of $\xi_M(t) \sim t^q$.

Graph showing the evolution of $E(k,t)$ and $E_K(k,t)$.
Cosmological Applications

- The Planck Collaboration\(^5\) derived upper limits on PMFs.

- They use a fixed spectral shape, and neglect the presence of a *turbulent regime*.

- Fields generated during EW and QCD Phase Transitions cannot leave any imprint on the CMB.

- Only scale-invariant fields can leave observable traces on the CMB.

Thank you
Supplementary Slides
Some Wave Numbers

The magnetic dissipation wavenumber is,

\[k_{\text{MD}}^4 = \frac{2}{\eta^2} \int_0^\infty dk \ k^2 \ \tilde{E}_M(k) \]

(7)

The weak turbulence dissipation wavenumber is,

\[\text{Lu}(k_{\text{WT}}) = \frac{v_A(k_{\text{WT}})}{\eta k_{\text{WT}}} = 1 \]

(8)

with \(v_A^2 = 2kE_M(k) \).
In the early universe, H is conserved. This leads to (for divergenceless \mathbf{B}),

$$L_- |\mathbf{B}(x)|^2 \leq (\text{curl}^{-1} \mathbf{B}) \cdot \mathbf{B} \leq L_+ |\mathbf{B}(x)|^2$$

where $L_- < 0 < L_+$ are the eigenvalues of curl$^{-1}$. This implies,

$$\left| \frac{(\text{curl}^{-1} \mathbf{B}) \cdot \mathbf{B}}{L_+} \right| \leq |\mathbf{B}(x)|^2$$

Taking the ensemble average,

$$\left| \frac{\mathcal{H}_M}{L_+} \right| \leq 2\mathcal{E}_M$$

$L_+ \sim \xi_M$.
Turbulence and MHD

Loitsiansky Integral: \(L = \int r^2 \langle u(x) \cdot u(x + r) \rangle \, dr \propto \ell^5 u_\ell^2 \)

Saffman Integral: \(S = \int \langle u(x) \cdot u(x + r) \rangle \, dr \propto \ell^3 u_\ell^2 \)

\[\text{Re} = \frac{u_{rms} \xi_M}{\nu} \]

Kolmogorov spectrum: \(E(k) \sim k^{-5/3} \) - comes from requirement of scale invariance. Inertial forces causes KE transfer.
Decay Laws

We take the maximum *comoving* correlation length at the epoch of EW Phase transition,

\[\xi_* \equiv \xi_{\text{max}} = H_*^{-1} \left(\frac{a_0}{a_*} \right) \sim 6 \times 10^{-11} \text{ Mpc} \]

and the maximum *mean* energy density as,

\[\mathcal{E}_* = 0.1 \times \frac{\pi^2}{30} g_* T_*^4 \sim 4 \times 10^{58} \text{ eV cm}^{-3} \]

We use \(\eta(a) = \frac{2}{\sqrt{\Omega_{m,0} H_0}} \left[\sqrt{a_{\text{eq}}} + a - \sqrt{a_{\text{eq}}} \right] \).

Non-helical case: \(\frac{\xi}{\xi_*} = \left(\frac{\eta}{\eta_*} \right)^{\frac{1}{2}} \), \(\frac{\mathcal{E}}{\mathcal{E}_*} = \left(\frac{\eta}{\eta_*} \right)^{-1} \).

Helical case: \(\frac{\xi}{\xi_*} = \left(\frac{\eta}{\eta_*} \right)^{\frac{2}{3}} \), \(\frac{\mathcal{E}}{\mathcal{E}_*} = \left(\frac{\eta}{\eta_*} \right)^{-\frac{2}{3}} \).

Partial: Turnover when \(\left(\frac{\eta^{\frac{1}{2}}}{\eta_*} \right) = \exp \left(\frac{1}{2} \sigma \right) \).
We solve the hydromagnetic equations for an isothermal relativistic gas with pressure \(p = \rho/3 \)

\[
\frac{\partial \ln \rho}{\partial t} = -\frac{4}{3} (\nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \ln \rho) + \frac{1}{\rho} \left[\mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \eta J^2 \right],
\]

\[
\frac{\partial \mathbf{u}}{\partial t} = -\mathbf{u} \cdot \nabla \mathbf{u} + \frac{\mathbf{u}}{3} (\nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \ln \rho) - \frac{\mathbf{u}}{\rho} \left[\mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \eta J^2 \right]
\]

\[
-\frac{1}{4} \nabla \ln \rho + \frac{3}{4\rho} \mathbf{J} \times \mathbf{B} + \frac{2}{\rho} \nabla \cdot (\rho \nu \mathbf{S}),
\]

\[
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B} - \eta \mathbf{J}),
\]

where \(S_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) - \frac{1}{3} \delta_{ij} \nabla \cdot \mathbf{u} \) is the rate-of-strain tensor, \(\nu \) is the viscosity, and \(\eta \) is the magnetic diffusivity.