Mass scale of vector like matter and superparters from IR fixed point predictions of gauge and top Yukawa couplings

Navin McGinnis w\ Radovan Dermiśek Indiana University Based on: <u>arXiv:1712.03527</u>

Phenomenology Symposium May 8, 2018

MSSM with a vector like family

- Vector like fermions introduced for a variety of phenomenological studies
 - g-2
 - Higgs mass
 - U(1)' physics
 - Flavor anomalies
- In my talk:
 - Extend the MSSM with a vector like family
 - Offers phenomenologically interesting GUT scenario, mass scales for vector like matter and superpartners inferred from IR fixed points in the model

 $W \supset M_Q Q \bar{Q} + M_U U \bar{U} + M_E E \bar{E} + M_L L \bar{L} + M_D D \bar{D} + M_N N \bar{N}$

 $10 \oplus \overline{10}$ $5 \oplus \overline{5}$ $1 \oplus \overline{1}$

Gauge couplings with VF

$$\frac{d\alpha_i}{dt} = \beta(\alpha_i) = \frac{\alpha_i^2}{2\pi} b_i$$
$$b_i = (33/5, 1, -3) + n_5(1, 1, 1) + 3n_{10}(1, 1, 1)$$

Complete vectorlike Family:

$$b_i = (53/5, 5, 1)$$

 $n_5 = n_{10} = 1$

All three couplings become asymptotically divergent

$$\alpha_i^{-1}(M_Z) = \frac{b_i}{2\pi} \ln \frac{M_G}{M_Z} + \alpha^{-1}(M_G)$$
$$\Rightarrow \frac{\alpha_i(M_Z)}{\alpha_j(M_Z)} \simeq \frac{b_j}{b_i}$$

Two parameter free predictions

Running of couplings

Weinberg angle

Correct EW scale value

$$\sin^2 \theta_W \equiv \frac{\alpha'}{\alpha_2 + \alpha'} \simeq \frac{b_2}{b_2 + b'} = 0.2205$$

Weinberg angle

Mass scale for vector like fermions

Shows huge range of parameters results in observed pattern of gauge couplings

Mass scale for vector like fermions

VF scale vs SUSY scale

For any $\alpha_G \ge 0.3$, VF or SUSY expected within 1.7 TeV (2.5 TeV) based on all gauge couplings within 1.7% (5%) from observed values at EW scale

Interesting tension in parameter space, in a region that can be tested in the near future

Fixed point for the top Yukawa

 $W \supset Y_U H_u Q \bar{U} + Y_D H_u \bar{Q} D$

$$\beta_{y_t}^{(1)} = y_t \left(6y_t^2 + 3Y_U^2 + 3Y_D^2 - \frac{16}{3}g_3^2 - 3g_2^2 - \frac{13}{15}g_1^2 \right)$$

Fixed point predictions for the top Yukawa

For $M_{SUSY} = 3$ TeV, multi-TeV scale needed to produce α_3 also gives robust prediction for top-yukawa

Conclusions

- Extending the MSSM with a complete vector like family offers an interesting SUSY GUT scenario:
 - Many features of the model highly insensitive to details at the GUT scale
 - Both VF and SUSY scales can be inferred by comparing to EW data and collider limits
 - Fixed points of Gauge couplings and top-quark Yukawa coupling all point ~ multi-TeV VF & SUSY scales (favored by Higgs mass)
- More specific spectrum can be studied by introducing specific SUSY breaking scenario, GUT scale model etc. Results presented here can be used to understand the implications of such a model

Thanks!