Quasi-fixed points from scalar sequestering and the little hierarchy problem in supersymmetry

Stephen P. Martin Northern Illinois University

> Pheno 2018 Pittsburgh May 8, 2018

Based on arXiv:hep-ph/1712.05806

The little hierarchy problem in SUSY:

 $m_Z^2 = -2(|\mu|^2 + m_{H_u}^2) + \mathcal{O}(1/\tan^2\beta) + \text{loop corrections.}$

Radiative corrections enhanced by large logarithms make $m_{H_u}^2$ sensitive to gluino and top-squarks with order 1 coefficients. Naively, suggests a worse than 1% level fine-tuning cancellation between μ^2 and $m_{H_u}^2$.

However, this conclusion should be examined critically.

All we really need is that the particular combination:

$$\widehat{m}_{H_u}^2 \equiv m_{H_u}^2 + |\mu|^2$$

is small, even if $|\mu|^2$ and $m_{H_u}^2$ are individually large. Can renormalization group running do this?

If Q is the renormalization scale, then near a conformal fixed point, could have power-law renormalization group running:

$$\widehat{m}_{H_u}^2(Q) = \left(\frac{Q}{M_*}\right)^{\Gamma} \widehat{m}_{H_u}^2(M_*),$$

where M_* is some very large input scale (perhaps the GUT or Planck scale).

We want a scaling dimension Γ that is positive and large.

The setup:

- $\bullet\,$ SUSY is broken in a hidden sector, parameterized by F_S ,
- The chiral superfield S that contains F_S is part of a strongly coupled theory ,
- SUSY breaking is communicated to the MSSM (visible) sector by non-renormalizable Lagrangian terms suppressed by a scale M_{\ast} ,
- Above a scale $\Lambda \sim \sqrt{F_S}$, which is supposed to be much less than M_* , the strongly coupled theory is approximately conformal, so there is power-law renormalization group running ,
- Scalar squared masses are driven towards 0 by renormalization group running.

This is scalar sequestering.

Roy and Schmaltz 0708.3593; Murayama, Nomura, Poland 0709.0775; Perez, Roy, Schmaltz 0811.3206, ...

The Big Picture: scales and running

Naively, expect relative suppression factor $(\Lambda/M_*)^{\Gamma}$ for scalar squared masses.

An important subtlety from Murayama, Nomura, Poland, 0709.0775 and Perez, Roy, Schmaltz, 0811.3206:

The Higgs squared masses that have hidden-sector superconformal scaling are the **combined** SUSY-breaking and SUSY-preserving ones:

$$\hat{m}_{H_u}^2 \equiv m_{H_u}^2 + |\mu|^2,
\hat{m}_{H_d}^2 \equiv m_{H_d}^2 + |\mu|^2$$

This seems like just what we want to cure the SUSY little hierarchy problem!

Generic notatations M_A and m_i^2 for parameters of mass dimensions 1 and 2:

$$M_A$$
 = gaugino masses, a terms, and the μ term,

$$m_i^2 =$$
 squark and slepton squared masses, $\widehat{m}_{H_u}^2$, $\widehat{m}_{H_d}^2$, and b ,

Then renormalization group equations above scale Λ are:

$$\begin{split} \frac{d}{dt} M_A &= \beta_{M_A}^{\rm MSSM}, \qquad \mbox{(run as usual!)} \\ \frac{d}{dt} m_i^2 &= \Gamma m_i^2 + \beta_{m_i^2}^{\rm MSSM}, \end{split}$$

where

$$t \equiv \ln(Q/Q_0).$$

We now know Γ can't be too large:

 $\Gamma~\lesssim~0.3$

from conformal bootstrap, Poland, Simmons-Duffin, Vichi, 1109.5176; Poland and Stergiou, 1509.06368.

Classic (2008) version of scalar sequestering

At the scale $Q = \Lambda$, boundary conditions from power-law suppression:

$$\widehat{m}_{H_u}^2, \, \widehat{m}_{H_d}^2, \, b, \, m_{\text{squarks}}^2, \, m_{\text{sleptons}}^2 \, \approx \, 0.$$

Prediction: light scalars including all Higgs bosons; heavy gauginos, heavy Higgsinos.

Unfortunately, the classic prediction is somewhat too naive. Some issues that limit the power-law suppression:

- Γ cannot be very large (now know $\lesssim 0.3$),
- The range of scales over which the superconformal scaling takes place is limited to $Q>\Lambda\sim\sqrt{F_S}~\gtrsim~10^{10}$ GeV.
- Need to include visible sector running as well.

Instead of power-law running to 0 in the infrared, dimension-2 terms will run towards quasi-fixed trajectories where the beta functions vanish:

$$m_{i,\,\mathrm{quasi-fixed}}^2 \approx -\beta_{m_i^2}^{\mathrm{MSSM}}/\Gamma.$$

These quasi-fixed points are moving targets, in reality may not be reached as one runs down to $\Lambda.$

Below the scale $\Lambda,$ the hidden sector superconformal scaling is broken, and the running continues with $\Gamma=0$ and the usual $\beta_{m_i^2}^{\rm MSSM}$

Fortunately, MSSM scalar squared mass beta functions are negative, and dominated by gaugino masses. Reduces flavor violation. For squarks, including only gluino contribution for simplicity:

$$m_{\tilde{q},\text{quasi-fixed}} \approx \sqrt{\frac{2}{3}} \frac{g_3 M_{\tilde{g}}}{\pi \sqrt{\Gamma}} = 0.365 \left(\frac{g_3}{0.77}\right) \left(\frac{0.3}{\Gamma}\right)^{1/2} M_{\tilde{g}}.$$

This quasi-fixed point is often reached, but running below the scale Λ increases the squark masses substantially.

Still, $M_{squark} < M_{gluino}$ is a fairly robust prediction. (See numerical examples below.) More importantly, what about quasi-fixed point for Higgs squared mass?

$$\begin{split} \widehat{m}^2_{H_u,\text{quasi-fixed}} &\approx \quad \frac{3}{8\pi^2\Gamma} \Big[g_2^2(M_2^2 + \mu^2) + \frac{g_1^2}{5}(M_1^2 + \mu^2) \\ &- a_t^2 - \mu^2(y_b^2 + 2y_\tau^2) - y_t^2(m_{Q_3}^2 + m_{u_3}^2) \Big]. \end{split}$$

For two reasons, I don't view this as a complete solution to the SUSY little hierarchy problem:

- Prefactor $\frac{3}{8\pi^2\Gamma}$ is no smaller than about 0.12
- Running below scale Λ is also significant

However, it has some helpful features:

- Terms of both signs, so cancellation can occur
- Predictive! Correlations between different parameters

Numerical examples

Input parameters at scale $M_* = M_{\rm GUT} = 2.5 \times 10^{16}$ GeV:

- Gaugino masses M_1, M_2, M_3 ,
- Higgsino mass μ ,
- Common scalar³ parameter A_0
- Common scalar squared mass m₀² (dependence on scalar squared masses is weak, due to quasi-fixed point behavior, but not negligible)

Require $M_Z = 91.2$ GeV and $\tan \beta$ fixed: in practice, this allows us to solve for μ and A_0 .

Also demand $123 \,\mathrm{GeV} < M_h < 127 \,\mathrm{GeV}$; very roughly fixes M_3 .

Example Model Line: non-unified gaugino masses

Assume fixed $\tan \beta = 15$ and at the unification scale:

 $M_3 = 1200 \text{ GeV},$ $M_2 = 4100 \text{ GeV},$ $M_1 = 2400 \text{ GeV}.$

Take m_0 variable, and solve for μ and A_0 .

In this case, the solved-for A_0 is negative and large in magnitude, so get large top-squark mixing. This in turn allows $M_h \approx 125$ GeV with relatively light top squarks. That's why M_3 can be so much smaller.

I wouldn't claim a complete solution to the SUSY little hierarchy problem, but subjectively, the smaller $m_{H_u}^2 + \mu^2$ at the quasi-fixed point suggests less "tuning" than in traditional models.

Renormalization group running of squark, gluino masses:

Squarks and gluino below 3 TeV, consistent with $M_h = 125$ GeV. Within striking distance of the LHC!

Features of the superpartner mass spectrum with non-unified gaugino masses:

 $M_h \approx 125$ GeV, nearly independent of high-scale m_0 .

Higgsino still very heavy, Winos could be the heaviest superpartners.

Model not excluded by the LHC, but not hopeless for eventual LHC discovery.

Conclusion:

- Interplay between visible sector renormalization and hidden sector superconformal scaling: quasi-fixed point behavior with predictive power
- According to my subjective standards, some improvement in the SUSY little hierarchy problem, but not a completely satisfying "solution".
- Results are more optimistic with non-unified gaugino masses, in particular $M_2 > M_3$.
- Hope for SUSY discovery at LHC.

"We are, I think, in the right Road of Improvement, for we are making Experiments."

– Benjamin Franklin

BACKUP

For sleptons:

$$m_{\tilde{e}_R, \text{quasi-fixed}} \quad \approx \quad \sqrt{\frac{3}{10}} \frac{g_1 M_1}{\pi \sqrt{\Gamma}} = 0.18 \left(\frac{g_1}{0.57}\right) \left(\frac{0.3}{\Gamma}\right)^{1/2} M_1,$$

where M_1 = bino mass parameter.

Running below the scale Λ increases the selectron mass, but naively the LSP (Lightest SUSY Particle) is a charged slepton. To avoid disaster in cosmology from charged stable particle:

- *R*-parity violation allows slepton LSP to decay
- Quasi-fixed point not quite reached, and LSP is neutralino (see numerical examples soon...)

How small can the scale Λ be?

(Knapen and Shih, 1311.7107)

Gaugino mass estimate at the scale Λ is

$$M_{\text{gaugino}} = c_a \left(\frac{F_S}{M_*}\right) \left(\frac{\Lambda}{M_*}\right)^{\gamma_S}$$

So, using $\Lambda \gtrsim \sqrt{F_S}$, and taking c_a of order unity, and requiring $M_{\rm gaugino} \gtrsim 1000 \, {\rm GeV}$, we need:

$$\Lambda \gtrsim [(1000 \text{ GeV}) M_*^{1+\gamma_S}]^{1/(2+\gamma_S)}.$$

Using the indications from the conformal bootstrap for $\gamma_S=3/7$, and taking $M_*=M_{\rm GUT}=2.5 imes10^{16}~{
m GeV}$, we need:

$$\Lambda \gtrsim \sqrt{F_S} \gtrsim 8 \times 10^{10} \, \mathrm{GeV}$$

In the following, for numerical examples I will optimistically take:

$$\Gamma = 0.3, \qquad M_* = M_{\text{GUT}}, \qquad \Lambda = 10^{11} \text{ GeV}.$$

Communication of supersymmetry breaking to the MSSM sector:

$$\begin{split} \mathcal{L}_{\text{gaugino masses}} &= -\frac{c_a}{2M_*} \int d^2\theta \, S \, \mathcal{W}^{a\alpha} \mathcal{W}^a_{\alpha} + \text{c.c.} \\ \mathcal{L}_a \, \text{terms} &= -\frac{c^{ijk}}{6M_*} \int d^2\theta \, S \phi_i \phi_j \phi_k + \text{c.c.} \\ \mathcal{L}_\mu \, \text{term} &= \frac{c_\mu}{M_*} \int d^4\theta \, S^* H_u H_d + \text{c.c.} \\ \mathcal{L}_b \, \text{term} &= \frac{c_b}{M_*^2} Z_{S^*S} \int d^4\theta \, S^* S H_u H_d + \text{c.c.} \\ \mathcal{L}_{m^2 \, \text{terms}} &= -\frac{c_i^j}{M_*^2} Z_{S^*S} \int d^4\theta \, S^* S \phi^{*i} \phi_j, \end{split}$$

Key feature: the last two terms are **non-holomorphic** in S, so they have an additional scaling factor $Z_{S^*S} \sim (Q/Q_0)^{\Gamma}$.

Dimension-2 terms (scalar squared masses) have extra power-law suppression compared to dimension-1 (gaugino masses, scalar cubic couplings, μ term).

To realize this, need a positive exponent from scaling dimensions:

$$\Gamma = \Delta_{S^*S} - 2\Delta_S,$$

in which

- Δ_{S^*S} is the scaling dimension for the operator S^*S , and
- $\Delta_S = 1 + \gamma_S$ is the scaling dimension for S.

Does such a superconformal theory exist?

If so, what can one say about Γ and Δ_S ?

No actual models with positive Γ are known, but. . .

There are now strong constraints and hints from the conformal bootstrap: Poland, Simmons-Duffin, Vichi, 1109.5176; Poland and Stergiou, 1509.06368.

From Poland and Stergiou, 1509.06368, shaded is excluded:

- "Kink" near $\Delta_S = 10/7$, circumstantial evidence a theory exists near there?
- For $\Delta_S = 10/7$, find that $\Gamma \lesssim 0.3$
- For smaller Δ_S , Γ is constrainted to be (much) smaller

Example Model Line 1: unified gaugino masses

Assume $M_1 = M_2 = M_3 \equiv m_{1/2}$.

- Free parameters: $m_{1/2}$, m_0 , $\tan\beta$
- Solved for using electroweak symmetry breaking: μ , A_0

It turns out that one can only get the correct $M_Z = 91.2$ GeV with small positive A_0 , so that top-squark mixing is moderate.

This in turn requires that $m_{1/2}$ is large, to give heavy top squarks, to allow $M_h = 125$ GeV.

A typical range of allowed values is $2.7~{
m TeV}~\lesssim~m_{1/2}~\lesssim~8.5~{
m TeV}.$

Renormalization group running of $\widehat{m}_{H_u}^2$, for $m_{1/2} = 4.5$ TeV, $\tan \beta = 15$:

Quasi-fixed point focusing behavior near 2 TeV, and further focusing behavior below scale $\Lambda=10^{11}$ GeV. Still needs some "tuning".

Renormalization group running of $\widehat{m}_{H_d}^2$, B, for $m_{1/2} = 4.5$ TeV:

Quasi-fixed point trajectory is somewhat less robustly attractive. Small B is easy to achieve; one of the classic motivations for scalar sequestering. Renormalization group running of squark, slepton masses, for $m_{1/2} = 4.5$ TeV:

The squarks are lighter than gluino; quasi-fixed point not so important for squarks, because SUSYQCD running below Λ dominates.

Slepton masses less strongly attracted to quasi-fixed point, running below Λ is weak. If $m_0 \leq 2.5m_{1/2}$, then LSP is a charged slepton. If $m_0 \gtrsim 2.5m_{1/2}$, then LSP is a bino-like neutralino. Sample mass spectra for $m_{1/2} = 4.5$ TeV, $\tan \beta = 15$, and two different assumptions for m_0 :

Horizontal range shown corresponds to 123 GeV $< M_h <$ 127 GeV. New particles safely out of reach of present LHC and future upgrades.