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The little hierarchy problem in SUSY:

m2
Z = −2(|µ|2 +m2

Hu
) +O(1/ tan2 β) + loop corrections.

Radiative corrections enhanced by large logarithms make m2
Hu

sensitive to gluino and top-squarks with order 1 coefficients.

Naively, suggests a worse than 1% level fine-tuning cancellation

between µ2 and m2
Hu

.

However, this conclusion should be examined critically.
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All we really need is that the particular combination:

m̂2
Hu

≡ m2
Hu

+ |µ|2

is small, even if |µ|2 and m2
Hu

are individually large. Can renormalization group

running do this?

If Q is the renormalization scale, then near a conformal fixed point, could have

power-law renormalization group running:

m̂2
Hu

(Q) =

(
Q

M∗

)Γ

m̂2
Hu

(M∗),

where M∗ is some very large input scale (perhaps the GUT or Planck scale).

We want a scaling dimension Γ that is positive and large.
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The setup:

• SUSY is broken in a hidden sector, parameterized by FS ,

• The chiral superfield S that contains FS is part of a strongly coupled theory ,

• SUSY breaking is communicated to the MSSM (visible) sector by

non-renormalizable Lagrangian terms suppressed by a scale M∗ ,

• Above a scale Λ ∼
√
FS , which is supposed to be much less than M∗, the

strongly coupled theory is approximately conformal, so there is power-law

renormalization group running ,

• Scalar squared masses are driven towards 0 by renormalization group

running.

This is scalar sequestering.

Roy and Schmaltz 0708.3593; Murayama, Nomura, Poland 0709.0775;

Perez, Roy, Schmaltz 0811.3206, . . .
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The Big Picture: scales and running

usual MSSM running

Hidden sector superconformal strong dynamics scaling

MPlanck

M∗ (hidden sector becomes strongly coupled, superconformal)

Λ ∼
√
FS (hidden sector SUSY, conformal symmetry breaks)

TeV scale

Naively, expect relative suppression factor (Λ/M∗)
Γ for scalar

squared masses.
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An important subtlety from Murayama, Nomura, Poland, 0709.0775

and Perez, Roy, Schmaltz, 0811.3206:

The Higgs squared masses that have hidden-sector superconformal

scaling are the combined SUSY-breaking and SUSY-preserving

ones:

m̂2
Hu

≡ m2
Hu

+ |µ|2,
m̂2

Hd
≡ m2

Hd
+ |µ|2

This seems like just what we want to cure the SUSY little hierarchy

problem!
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Generic notatations MA and m2
i for parameters of mass dimensions 1 and 2:

MA = gaugino masses, a terms, and the µ term,

m2
i = squark and slepton squared masses, m̂2

Hu
, m̂2

Hd
, and b,

Then renormalization group equations above scale Λ are:

d

dt
MA = β

MSSM

MA
, (run as usual!)

d

dt
m2

i = Γm2
i + β

MSSM

m2

i

,

where

t ≡ ln(Q/Q0).

We now know Γ can’t be too large:

Γ <∼ 0.3

from conformal bootstrap, Poland, Simmons-Duffin, Vichi, 1109.5176; Poland and

Stergiou, 1509.06368.
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Classic (2008) version of scalar sequestering

At the scale Q = Λ, boundary conditions from power-law suppression:

m̂2
Hu

, m̂2
Hd

, b, m2
squarks, m

2
sleptons ≈ 0.

Prediction: light scalars including all Higgs bosons; heavy gauginos, heavy

Higgsinos.

Unfortunately, the classic prediction is somewhat too naive. Some issues that limit

the power-law suppression:

• Γ cannot be very large (now know <∼ 0.3),

• The range of scales over which the superconformal scaling takes place is

limited to Q > Λ ∼
√
FS >∼ 1010 GeV.

• Need to include visible sector running as well.
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Instead of power-law running to 0 in the infrared, dimension-2 terms

will run towards quasi-fixed trajectories where the beta functions

vanish:

m2
i, quasi-fixed ≈ −βMSSM

m2

i

/Γ.

These quasi-fixed points are moving targets, in reality may not be

reached as one runs down to Λ.

Below the scale Λ, the hidden sector superconformal scaling is

broken, and the running continues with Γ = 0 and the usual βMSSM

m2

i

Fortunately, MSSM scalar squared mass beta functions are

negative, and dominated by gaugino masses. Reduces flavor

violation.
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For squarks, including only gluino contribution for simplicity:

mq̃,quasi-fixed ≈
√

2

3

g3Mg̃

π
√
Γ

= 0.365
( g3
0.77

)(
0.3

Γ

)1/2

Mg̃.

This quasi-fixed point is often reached, but running below the scale

Λ increases the squark masses substantially.

Still, Msquark < Mgluino is a fairly robust prediction.

(See numerical examples below.)
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More importantly, what about quasi-fixed point for Higgs squared mass?

m̂2
Hu,quasi-fixed ≈ 3

8π2Γ

[
g22(M

2
2 + µ2) +

g21
5
(M2

1 + µ2)

−a2t − µ2(y2b + 2y2τ )− y2t (m
2
Q3

+m2
u3
)
]
.

For two reasons, I don’t view this as a complete solution to the SUSY little

hierarchy problem:

• Prefactor
3

8π2Γ
is no smaller than about 0.12

• Running below scale Λ is also significant

However, it has some helpful features:

• Terms of both signs, so cancellation can occur

• Predictive! Correlations between different parameters
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Numerical examples

Input parameters at scale M∗ = MGUT = 2.5× 1016 GeV:

• Gaugino masses M1,M2,M3,

• Higgsino mass µ,

• Common scalar3 parameter A0

• Common scalar squared mass m2
0 (dependence on scalar

squared masses is weak, due to quasi-fixed point behavior, but

not negligible)

Require MZ = 91.2 GeV and tan β fixed: in practice, this allows

us to solve for µ and A0.

Also demand 123GeV < Mh < 127GeV; very roughly fixes M3.
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Example Model Line: non-unified gaugino masses

Assume fixed tan β = 15 and at the unification scale:

M3 = 1200 GeV,

M2 = 4100 GeV,

M1 = 2400 GeV.

Take m0 variable, and solve for µ and A0.

In this case, the solved-for A0 is negative and large in magnitude,

so get large top-squark mixing. This in turn allows Mh ≈ 125 GeV

with relatively light top squarks. That’s why M3 can be so much

smaller.
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Renormalization group running of m̂2
Hu

= µ2 +m2
Hu

:
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I wouldn’t claim a complete solution to the SUSY little hierarchy

problem, but subjectively, the smaller m2
Hu

+ µ2 at the quasi-fixed

point suggests less “tuning” than in traditional models.
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Renormalization group running of squark, gluino masses:
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Squarks and gluino below 3 TeV, consistent with Mh = 125 GeV.

Within striking distance of the LHC!
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Features of the superpartner mass spectrum with non-unified gaugino masses:
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Mh ≈ 125 GeV, nearly independent of high-scale m0.

Higgsino still very heavy, Winos could be the heaviest superpartners.

Model not excluded by the LHC, but not hopeless for eventual LHC discovery.
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Conclusion:

• Interplay between visible sector renormalization and hidden sector

superconformal scaling: quasi-fixed point behavior with predictive power

• According to my subjective standards, some improvement in the SUSY little

hierarchy problem, but not a completely satisfying “solution”.

• Results are more optimistic with non-unified gaugino masses, in particular

M2 > M3.

• Hope for SUSY discovery at LHC.

“We are, I think, in the right Road of Improvement,

for we are making Experiments.”

– Benjamin Franklin
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BACKUP
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For sleptons:

mẽR,quasi-fixed ≈
√

3

10

g1M1

π
√
Γ

= 0.18
( g1
0.57

)(
0.3

Γ

)1/2

M1,

where M1 = bino mass parameter.

Running below the scale Λ increases the selectron mass, but naively the LSP

(Lightest SUSY Particle) is a charged slepton. To avoid disaster in cosmology

from charged stable particle:

• R-parity violation allows slepton LSP to decay

• Quasi-fixed point not quite reached, and LSP is neutralino (see numerical

examples soon. . . )
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How small can the scale Λ be? (Knapen and Shih, 1311.7107)

Gaugino mass estimate at the scale Λ is

Mgaugino = ca

(
FS

M∗

)(
Λ

M∗

)γS

.

So, using Λ >∼
√
FS , and taking ca of order unity, and requiring

Mgaugino >∼ 1000 GeV, we need:

Λ >∼ [(1000 GeV)M1+γS

∗
]1/(2+γS).

Using the indications from the conformal bootstrap for γS = 3/7, and taking

M∗ = MGUT = 2.5× 1016 GeV, we need:

Λ >∼
√

FS >∼ 8× 1010 GeV

In the following, for numerical examples I will optimistically take:

Γ = 0.3, M∗ = MGUT, Λ = 1011 GeV.
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Communication of supersymmetry breaking to the MSSM sector:

Lgaugino masses = − ca
2M∗

∫
d2θ SWaαWa

α + c.c.

La terms = − cijk

6M∗

∫
d2θ Sφiφjφk + c.c.

Lµ term =
cµ
M∗

∫
d4θ S∗HuHd + c.c.

Lb term =
cb
M2

∗

ZS∗S

∫
d4θ S∗SHuHd + c.c.

L
m2

terms
= − cji

M2
∗

ZS∗S

∫
d4θ S∗Sφ∗iφj ,

Key feature: the last two terms are non-holomorphic in S, so they have an

additional scaling factor ZS∗S ∼ (Q/Q0)
Γ.

Dimension-2 terms (scalar squared masses) have extra power-law suppression

compared to dimension-1 (gaugino masses, scalar cubic couplings, µ term).
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To realize this, need a positive exponent from scaling dimensions:

Γ = ∆S∗S − 2∆S,

in which

• ∆S∗S is the scaling dimension for the operator S∗S, and

• ∆S = 1 + γS is the scaling dimension for S.

Does such a superconformal theory exist?

If so, what can one say about Γ and ∆S?

No actual models with positive Γ are known, but. . .

There are now strong constraints and hints from the conformal bootstrap:

Poland, Simmons-Duffin, Vichi, 1109.5176; Poland and Stergiou, 1509.06368.
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From Poland and Stergiou, 1509.06368, shaded is excluded:

• Γ = ∆S∗S − 2∆S can be positive, but is bounded from above

• “Kink” near ∆S = 10/7, circumstantial evidence a theory exists near there?

• For ∆S = 10/7, find that Γ <∼ 0.3

• For smaller ∆S , Γ is constrainted to be (much) smaller
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Example Model Line 1: unified gaugino masses

Assume M1 = M2 = M3 ≡ m1/2.

• Free parameters: m1/2, m0, tan β

• Solved for using electroweak symmetry breaking: µ, A0

It turns out that one can only get the correct MZ = 91.2 GeV with small positive

A0, so that top-squark mixing is moderate.

This in turn requires that m1/2 is large, to give heavy top squarks, to allow

Mh = 125 GeV.

A typical range of allowed values is 2.7 TeV <∼ m1/2 <∼ 8.5 TeV.
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Renormalization group running of m̂2
Hu

, for m1/2 = 4.5 TeV, tan β = 15:
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Lines = different m0 input

values at the high scale

M∗ = MGUT.

Quasi-fixed point focusing behavior near 2 TeV, and further focusing

behavior below scale Λ = 1011 GeV. Still needs some “tuning”.
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Renormalization group running of m̂2
Hd

, B, for m1/2 = 4.5 TeV:
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Quasi-fixed point trajectory is somewhat less robustly attractive.

Small B is easy to achieve; one of the classic motivations for scalar

sequestering.
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Renormalization group running of squark, slepton masses, for m1/2 = 4.5 TeV:
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The squarks are lighter than gluino; quasi-fixed point not so important for squarks,

because SUSYQCD running below Λ dominates.

Slepton masses less strongly attracted to quasi-fixed point, running below Λ is weak.

If m0 <∼ 2.5m1/2, then LSP is a charged slepton.

If m0 >∼ 2.5m1/2, then LSP is a bino-like neutralino.
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Sample mass spectra for m1/2 = 4.5 TeV, tan β = 15, and two different

assumptions for m0:
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Horizontal range shown corresponds to 123 GeV < Mh < 127 GeV.

New particles safely out of reach of present LHC and future upgrades.
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