Momentum distributions for the $D^0 \bar{D}^0 \pi^0$ and $D^0 \bar{D}^0 \gamma$ decay modes of the X(3872) resonance

Liping He

In collaboration with Eric Braaten

Department of Physics, The Ohio State University
Outline

- Introduction to the X(3872)
- Universal properties of near-threshold S-wave resonance
- Line shapes for $D^0 \bar{D}^0 \pi^0 / D^0 \bar{D}^0 \gamma$
- Momentum distributions for $D^0 \bar{D}^0 \pi^0 / D^0 \bar{D}^0 \gamma$
- Summary
Introduction to the X(3872)

Discovery
- **Belle Collaboration (2003)**

 \[B^+ \rightarrow K^+ + X \]

 \[X \rightarrow J/\psi \pi^+ \pi^- \]

Confirmation
- **CDF Collaboration**

 \[p\bar{p} \rightarrow X + \text{anything} \]

![Graph showing data for X(3872)](image)

PRL 91, 262001 (2003)

Introduction to the $X(3872)$

- Observation of $D^0 \bar{D}^0 \pi^0$ decay mode
 - Belle Collaboration (2006) [PRL 97, 162002]
Introduction to the $X(3872)$

- **Mass:** 3871.69 ± 0.17 MeV (PDG 2017)

$$M_X - (M_{*0} + M_0) = (+0.01 \pm 0.18) \text{ MeV}$$

- **Width:** < 1.2 MeV at 90% C.L. [Belle, PRD 84, 052004 (2011)]

- **J^{PC} Quantum numbers:** $J^{PC}=1^{++}$ [LHCb, PRL, 110, 222001(2013)]
Introduction to the \textbf{X(3872)}

- What is the \textbf{X(3872)?}

 Two crucial experimental inputs:

 - **Quantum numbers**: $J^{PC}=1^{++}$

 \begin{align*}
 \text{S-wave coupling to } & D^0 \bar{D}^0 / \bar{D}^* D^0 \\
 \text{resonant coupling}
 \end{align*}

 - **Mass** is extremely close to $D^* \bar{D}$ threshold

- **Conclusion**: \textbf{X(3872) is a charm meson molecule!}

\[
X = \frac{1}{\sqrt{2}} \left(D^* \bar{D}^0 + D^0 \bar{D}^* \right)
\]
Universal properties

Nonrelativistic Quantum Mechanics:

- Short-range interactions
- S-wave resonance close enough to threshold

 large scattering length a (\gg range)

 universal features depend only on a, insensitive to shorter distances

$X(3872)$ close to $D^*0 \bar{D}^0$ threshold

 universal features depend only on large scattering length a or complex inverse scattering length $\gamma(1/a)$ for $D^*0 \bar{D}^0$
The energy distribution summed over all resonant channels:

\[
\frac{dR}{dE} \text{[total]} = R_0 \frac{\text{Re} \left[\sqrt{2\mu(E + i\Gamma_{*0}/2)} \right] + \text{Im}[\gamma]}{|-\gamma + \kappa(E)|^2}
\]

\(R_0 \): normalization factor depends on production mechanism.

\(\kappa(E) = \sqrt{-2\mu(E + i\Gamma_{*0}/2)} \)

\(E \): energy relative to the \(D^{*0} \bar{D}^0 \) threshold

Inelastic channels:

\(J/\psi \pi^+ \pi^- \), \(J/\psi \pi^+ \pi^- \pi^0 \)

Pole at

\[E = -E_X - \frac{i\Gamma_X}{2} \]

\[\gamma = \sqrt{2\mu(E_X + i(\Gamma_X - \Gamma_{*0})/2)} \]
Previous theoretical work on $D^0 \bar{D}^0 \pi^0$ and $D^0 \bar{D}^0 \gamma$

- **Voloshin** [PLB 579, 316 (2004)]:
 - interference between $D^{*0} \bar{D}^0 / \bar{D}^{*0} D^0$:
 - $J^{PC}=1^{++}$ constructive in $D^0 \bar{D}^0 \pi^0$
 - destructive in $D^0 \bar{D}^0 \gamma$

- momentum distributions reveal inner structure of X(3872)

- **Voloshin** [Int.J.Mod.Phys.A21 (2006)]
- **Colangelo, Fazio, Nicotri** [PLB 650, 166 (2007)]
- **Schmidt, Jansen, Hammer** [arXiv: J. C74, 1804.00375]
- ...

Widths of X and D^{*0} not treated consistently.
Line shapes in $D^0 \bar{D}^0\pi^0 / D^0 \bar{D}^0\gamma$

$\Gamma_X = \Gamma_{*0}$

$\Gamma_X = 3\Gamma_{*0}$

E: energy relative to the $D^{*0}\bar{D}^0$ threshold.

Line shape is sensitive to the binding energy E_0 and decay width Γ_X.
Line shapes in $D^0 \bar{D}^0 \pi^0 / D^0 \bar{D}^0 \gamma$

Gaussian smearing in energy with width 1 MeV:

$\Gamma_x = \Gamma_{*0}$

$\Gamma_x = 3 \Gamma_{*0}$

- Black: $E_x = 0.2$ MeV
- Orange: $E_x = 0$ MeV
- Blue: $E_x = -0.2$ MeV

E (MeV) vs. dR/dE
Momentum distributions for $D^0 \bar{D}^0 \pi^0$ decay modes

\[\frac{dR}{dEdp} = R_0 \frac{1}{| - \gamma + \kappa(E)|^2} \frac{d\Gamma}{dp} \]
\[d\Gamma = \frac{1}{3} \sum_{spin} |M|^2 d\Pi_3 \]
\[\gamma = \sqrt{2\mu (E_X + i(\Gamma_X - \Gamma_{*0})/2)} \]
\[\kappa(E) = \sqrt{-2\mu (E + i\Gamma_{*0}/2)} \]

Kinematic variables in $D^0 \bar{D}^0 \pi^0$ rest frame:

$E = \text{energy of } D^0 \bar{D}^0 \pi^0 \text{ relative to } D^{*0} \bar{D}^0 \text{ threshold}$

$p = \text{momentum of } D^0$

The shape of D^0 momentum distribution is insensitive to the binding energy and width of $X(3872)$ at fixed energy
Momentum distributions for $D^0 \bar{D}^0 \pi^0$ decay modes

At $E_x=0$, $\Gamma_x = \Gamma_{*0}$:

- Two peaks
- One wider peak
Momentum distributions

Explanation to double peak structure:

\[\pi^0 \to D^*^0 \to D^0 \to \pi^0 \]

- \(p \approx 40 \text{ MeV} \)

\[\bar{D}^*^0 \to \bar{D}^0 \to \pi^0 \to \bar{D}^0 \]

- \(p \approx 0 \)

\[D^0 \bar{D}^0 \pi^0 : \text{peaks are near } p \approx 0 \text{ and } p \approx 40 \text{ MeV} \]

\[D^0 \bar{D}^0 \gamma : \text{peaks are near } p \approx 0 \text{ and } p \approx 140 \text{ MeV} \]
Momentum distributions for $D^0 \bar{D}^0 \gamma$ decay modes

At $E_x = 0$, $\Gamma_x = \Gamma_{*0}$:

\[
\frac{dR}{dE dp} \quad \text{E=0} \quad \text{smeared around E=0}
\]
Summary

- **Double peaked structure** in D^0 momentum distributions for $D^0\bar{D}^0\pi^0$ and $D^0\bar{D}^0\gamma$ decay modes of the X(3872).

- First consistent theoretical treatment of width of X and D^{*0}.

- Position and width of the peaks are insensitive to the binding energy and width of X(3872).

- Smearing from experimental energy resolution:
 * two peaks for $D^0\bar{D}^0\pi^0$ smeared together
 * two peaks for $D^0\bar{D}^0\gamma$ still separated

- The D^0 momentum distributions should be measured at Belle II.
Thank you!
Branching ratios:

\[
\frac{\text{Br}[X \to J/\psi \pi^+ \pi^- \pi^0]}{\text{Br}[X \to J/\psi \pi^+ \pi^-]} = \begin{cases}
1.0 \pm 0.5 & \text{Belle} \\
0.8 \pm 0.3 & \text{BaBar}
\end{cases}
\]

\[
J/\psi \pi^+ \pi^- \pi^0 \approx J/\psi \omega^* \quad \text{isospin 0}
\]

\[
J/\psi \pi^+ \pi^- \approx J/\psi \rho^* \quad \text{isospin 1}
\]

- large violation of isospin symmetry
- stronger coupling to isospin 0

\[
\frac{|G_{X J/\psi \rho}|^2}{|G_{X J/\psi \omega}|^2} \approx 0.08 \pm 0.04
\]

\[
\mathcal{L}_{XD^{*0}D^0} = \bar{g} g_{\mu\nu} X^\mu D^{*0\nu\dagger} D^{0\dagger} + h.c.,
\]

\[
\mathcal{L}_{D^{*0}D^0\gamma} = g_\gamma \epsilon_{\mu\nu\alpha\beta} \partial^\beta D^{*0\nu} D^{0\dagger} \partial^\alpha A^{\mu\dagger} + h.c.
\]

\[
\mathcal{L}_{D^{*0}D^0\pi^0} = \frac{g}{2\sqrt{m_0} f_\pi (M_0 + m_0)} D^{*0} [D^0 (M_0 \vec{\nabla} - m_0 \hat{\nabla}) \pi^0] + h.c.
\]
\[\Gamma_{*0} : \text{width of } D^{*0}, \text{ obtained by chiral symmetry and isospin symmetry:} \]

\[
\frac{\text{Br}[D^{*0} \rightarrow D^0\pi^0]\Gamma_{*0}}{\text{Br}[D^{*+} \rightarrow D^0\pi^+]\Gamma_{*1}} = \frac{1}{2} \frac{\lambda^{3/2}(M_{*0}^2, M^2_0, m^2_0)/M_{*0}^5}{\lambda^{3/2}(M_{*1}^2, M^2_0, m^2_1)/M_{*1}^5}
\]

\[\Gamma_{*1} = (83.4 \pm 1.8) \text{ keV} \quad \Gamma_{*0} = (55.4 \pm 1.8) \text{ keV} \]

\[\frac{dR}{dE} \propto R_0 \frac{\text{Re}[2\mu(E + i\Gamma_{*0}/2)]}{| -\gamma + \kappa(E)|^2} \]

\[\gamma = \sqrt{2\mu(E_X + i(\Gamma_X - \Gamma_{*0})/2)} \]

\[dR[D^0 \bar{D}^0\pi^0] = R_0 \frac{1}{| -\gamma + \kappa(E)|^2} dEd\Gamma[D^0 \bar{D}^0\pi^0] \]

Transition amplitude in the C=+ S-wave channel:

\[A(E) = \frac{2\pi/\mu}{-\gamma + \kappa(E)} \]

\[\kappa(E) = \sqrt{-2\mu(E + i\Gamma_{*0}/2)} \quad E: \text{ energy relative to the } D^{*0}\bar{D}^0 \text{ threshold.} \]
$D^0 \bar{D}^0 \pi^0$

$D^0 \bar{D}^0 \gamma$
Line shape

smearing
Momentum distributions for $D^0 \bar{D}^0 \pi^0$ decay modes

Gaussian smearing in energy with width 1 MeV:

$E = \text{energy of } D^0 \bar{D}^0 \pi^0 \text{ relative to } D^{*0} \bar{D}^0 \text{ threshold}$

$p = \text{momentum of } D^0$

momentum distributions at $E_{x}=0$, $\Gamma_{x} = \Gamma_{*0}$:

\[\frac{dR}{dE dp} \]
Momentum distributions for $D^0 \bar{D}^0 \gamma$ decay modes

Gaussian smearing in energy with width 1 MeV:

E = energy of $D^0 \bar{D}^0 \pi^0$ relative to $D^{*0} \bar{D}^0$ threshold

p = momentum of D^0

momentum distributions at $E_{x}=0$, $\Gamma_x = \Gamma_{*0}$:

- $E=-0.2$ MeV
- $E=+0.2$ MeV