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SIFT:	Scale-Invariant	Filter	Tree
Outline	of	Presentation

• SCALE	INVARIANT
o Jet	Clustering	Background
o Motivation	for	Scale	Invariance
o Algorithm	Implementation
o Algorithm	Visualization
o Algorithm	Testing

• FILTER
o Integrated	Grooming
o Remove	Soft	Co-Linear	Radiation
o A	Natural	Halting	Condition

• TREE
o Fast	Algorithms
o Multidimensional	Trees
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SIFT:	SCALE-INVARIANT Filter	Tree
• Traditional	Jet	Clustering	imposes	a	fixed	cone	size,	and	thus	a	fixed	scale	on	events
• Boosted	objects	tend	to	collimate	and	fall	into	a	single	jet	radius
• Substructure	techniques	are	essential	for	recovering	information	inside	the	jet
• However,	these	techniques	are	often	complicated,	with	de- and	re-clustering

• We	propose	as	SCALE	INVARIANT	approach	which	is	intrinsically	suitable	for	
tagging	substructure	AS	the	jet	is	being	assembled
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Collider	Variables	&	Coordinates
• Transverse	components	(perpendicular	to	the	beam)	are	very	important	

(invariant	under	longitudinal	boosts,	PT total	is	zero)
• Differences	in	orientation	characterized	by	DR,	referring	also	to	azimuth	angle	f
• The	pseudorapidity h is	a	proxy	for	the	polar	(beam)	angle	q,	defined	such	that	

differences	Dh are	(almost)	invariant	under	longitudinal	boosts
• This	invariance	is	exact	for	the	rapidity	y (difference	is	handling	of	MASS)
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Formation	of	Hadronic	Jets
• The	hard	partonic event	may	result	in	the	production	of	colored	objects											

(at	Feynman	diagram	level,	e.g.	MadGraph)
• These	objects	rapidly	”shower”,	radiating	quarks	&	gluons	(e.g.	Pythia)
• QCD	confinement	implies	that	strongly	charged	particles	cannot	exist	as	free	

objects	at	large	separations;	they	must	convert	“hadronize”	(e.g.	Lund	color	
strings	in	Pythia)	into	color-neutral	particles	such	as	pions,	K	mesons,	etc.

• Color	strings	may	convolve	descendants	of	partonic objects	with	each	other	and	
even	with	the	underlying	beam;	this	is	partially	mitigated	in	a	lepton	collider

Image:	Stefan	Höche

Image:	CMS
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Standard	Jet	Clustering	Algorithms

• Hadronized objects	need	to	be	recombined	in	a	manner	that	preserves	
correlation	with	the	underlying	hard	(partonic)	event

• 3	related	algorithms	reference	an	input	angular	width	R0 &	differ	by	an	index	n
• Objects	more	widely	separated	than	R0 will	never	be	clustered
• 𝑛	 = 	0,	or	“Cambridge/Aachen”	clusters	objects	with	high	angular	adjacency
• 𝑛	 = 	+1,	or	“kT”	additionally	favors	clustering	of	soft	pairs	first
• 𝑛	 = 	−1,	or	“Anti-kT”	prioritizes	clustering	where	one	of	the	pair	is	hard
• Anti-kT is	now	the	default	jet	clustering	tool	at	LHC,	with	𝑅0	 = 	 (0.4,0.5)
• It	is	robust	against	“soft”	and	“colinear”	jet	perturbations	and	has	regular	jet	

shapes	which	are	favorable	for	calibration	against	pileup,	etc.
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Jet	Substructure

• Highly	boosted	mothers	will	tend	to	yield	very	collimated	daughters
• In	hadronic	top	quark	decays	t	⇒W/b	⇒ u/d/b	with	COM	energy	above	a	TeV,

the	likelihood	of	resolving	only	2	or	even	1	discrete	object	increases
• For	example,	within,	a	“fat”	(large	R0 ≳ 1),	N-Subjettiness tN can	characterize	

how	well	the	event	matches	an	N-prong	hypothesis	(axes	chosen	separately)
• The	best	discrimination	comes	from	the	ratio	rN,	e.g.	how	much	more	3-prong-

like	is	the	event	than	2-prong	like
• Variable	cone	sizes	have	also	been	considered	to	cope	with	loss	of	structure
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A	Scale-Invariant	Jet	Algorithm
• It	may	be	worth	asking	whether	alternative	techniques	could	provide	intrinsic	

resiliency	to	boosted	event	structure;	this	requires	dropping	the	input	scale	R0
• It	would	be	good	to	“asymptotically”	recover	the	favorable	behavior	of	Anti-kT
• Numerator	should	favor	angular	collimation;		we	propose	∆𝑀2,	similar	to	JADE
• Denominator	should	suppress	soft	pair	clustering;	we	propose	a	sum	of	𝐸𝑇
• Result	is	dimensionless,	Lorentz	invariant	(longitudinally	in	the	denominator),	

and	free	from	references	to	external	/	arbitrary	scales
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Hadronic	TTbar Scale-Invariant	Clustering
https://youtu.be/u9Z4qDuXL84



Test	of	Pre/Post	Merger	Statistic	for	Di-jets

• 95%	of	pairs	reconstructed	prior	to	0.1
• 95%	of	final	final	mergers	are	after	2.0
• Results	are	invariant	wrt beam	energy
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Visualization	of	Statistic	Jump	at	Clustering
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• The	event	jettiness count	is	intrinsically	imprinted	on	the	clustering	history	
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Matching	of	final	6	objects	with	Truth-Level	Quarks
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Lepton	to	TTbar 2.5	TeV Anti-KT	0.5	with	Ghosts
https://youtu.be/1fhbhlDrORA
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Lepton	to	TTbar 2.5	TeV Scale	Invariant	Clustering	with	Ghosts
https://youtu.be/kxUmgv1HHMs



SIFT:	Scale-Invariant	FILTER Tree
• Running	to	termination	can	lead	to	merging	of	stray	radiation
• Take	a	cue	from	“Soft	Drop”	(2014	Larkoski,	Marzani,	Soyez,	Thaler)
• This	procedure	“Grooms”	a	jet	by	removing	soft,	wide-angle	radiation	

to	mitigate	contamination	from	ISR,	UE,	and	pileup
• SD	iteratively	DECLUSTERS	C/A,	dropping	softer	object	unless	&	until:

min	(𝑃9:, 𝑃9;)
𝑃9: + 𝑃9;

> 𝑧>?@
Δ𝑅:;
𝑅B

C

• Typically,	𝑧>?@ is	𝒪(0.1),	and	𝛽 > 0 for	grooming
• We	propose	a	scale-invariant	analog	which	is	applied	within	the	

original	clustering	itself.

𝐸9:𝐸9;
𝐸9:F + 𝐸9;F

>
∆𝑀:;F

2𝐸9:𝐸9;
		⟹			𝛿:;	≡

∆𝑀:;F

𝐸9:F + 𝐸9;F
<

2𝐸9:F 𝐸9;F

(𝐸9:F +𝐸9;F )F

• The	softer	object	is	considered	isolated	unless	it	passes	this	FILTER
• This	provides	a	natural	halting	condition	to	prevent	total	assimilation
• Curiously,	the	dynamic	threshold	is	symmetric	under	𝐸9 → 1/𝐸9

Walker	- Sam	Houston	State	- Pheno	2018 15



Walker	- Sam	Houston	State	- Pheno	2018 16

Hadronic	TTbar Scale-Invariant	Clustering	with	Filtering
https://youtu.be/rDsBeEBTimw
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Lepton	to	TTbar 2.5	TeV SIFT	Filtered	Clustering	with	Ghosts
https://youtu.be/G1XB5sQaolk



SIFT:	Scale-Invariant	Filter	TREE
• A	jet	clustering	algorithm	is	USELESS	practically	unless	it	is	FAST
• Critical	issue	is	the	scaling	dimension	with	number	N of	constituents
• A	naïve	implementation	is	CUBIC	𝒪 𝑁N because	there	are	Nmergers	with	

a	scan	over	N	x	N possible	pairings	at	each	stage.		TOO	SLOW!
• Why	is	FastJet (Cacciari,	Salam,	Soyez)	FAST?
• FJ	Lemma	trims	to	𝒪 𝑁F by	scanning	only	GEOMETRIC	nearest	neighbors
• How?	The	magic	of	“min	of	a	min”	facilitates	factorization
• GLOBAL	min	of	𝛿:; has	the	property	that	Bminimizes	Δ𝑅:; if	𝑃9:FO < 𝑃9;FO

𝛿:; ≡ min	(𝑃9:FO, 𝑃9;FO)	×
QRST
RU

F

• Then,	with	a	FAST	𝒪(log𝑁) algorithm	for	caching	neighbors,	the	
combined	runtime	can	be	“linearithmic”	𝒪(𝑁	log𝑁).		GOLD	STANDARD!

• Signature	of	𝒪(log𝑁) algorithms	is	halving	of	problem	size	with	each	cycle
• Example	is	“bisection”	method	of	traversing	a	sorted	list
• The	FAST	approach	to	finding	nearest	neighbors	can	use	a	TREE
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Can	SIFT	be	FAST?
• If	yes,	there	needs	to	be	something	like	a	“GEOMETRIC”	measure
• As	originally	expressed,	the	metric	is	not	even	written	in	terms	of	coordinates
• For	massless	A &	B,	∆𝑀:;F = 2𝑃:

Y𝑃Y; ⇒ 2𝑃:𝑃;(1 − cos∆𝜃) ≈ 𝑃:𝑃;(∆𝜃F − ∆𝜃_/12)
• But,	we	need	to	refer	to	the	collider	coordinates	of	A &	B directly	(∆𝜂:;, ∆𝜙:;,	etc.)
• Conjecture:	for	massive	A &	B,	it	will	actually	be	∆𝑦:; that	is	relevant
• Boost	from	the	𝑃c = 0 frame	into	the	lab:

𝐸
𝑃c

= cosh 𝑦 sinh 𝑦
sinh 𝑦 cosh 𝑦

𝐸9
0 = 𝐸9 cosh 𝑦

𝐸9 sinh 𝑦

2𝑃:
Y𝑃Y; = 2(𝐸:𝐸; − 𝑃c:𝑃c; − 𝑃9:𝑃9; cos ∆𝜃:;)

= 2(𝐸9:𝐸9;[cosh 𝑦: cosh 𝑦; −sinh 𝑦: sinh 𝑦;] − 𝑃9:𝑃9; cos ∆𝜃:;)

= 2(𝐸9:𝐸9; cosh∆𝑦:; − 𝑃9:𝑃9; cos ∆𝜃:;)

• We	are	getting	WARM.		BUT	the	difference	between	𝐸9	&	𝑃9 (i.e.	MASS)	means	
that	we	CANNOT	perfectly	factorize	kinematics	from	geometrics

• Nevertheless,	we	can	proceed.		BUT,	we	must	seek	neighbors	in	a	3D	or	4D	space
• The	FastJet engine	(Voronoi Tesselation)	is	2D.		We	need	a	custom	engine.
• NOTE:	hyperbolic	cosine	differs	from	cosine	in	that	all	Taylor	terms	are	POSITIVE	

Walker	- Sam	Houston	State	- Pheno	2018 19



Building	an	D-Dimensional	Tree

• “Balanced	KD-Tree”	framework	(2003	Procopiuc,	Agarwal,	Arge,	Vitter)	is	suitable
• The	forking	property	of	a	tree	allows	𝒪(log𝑁) traversal
• Each	descending	“row”	of	the	tree	sorts	on	the	next	cyclic	coordinate	index
• To	stay	“balanced”	we	never	add	objects	to	a	tree	after	initial	construction
• We	maintain	a	“forest”	of	trees	of	doubling	size,	as	needed
• Protocols	for	pruning,	grafting,	and	merging	leaves	must	be	built	in
• Be	sure	to	not	reinject	𝒪 𝑁F scaling	in	these	updates.		Non-Trivial!
• Protocols	for	neighbor	finding	under	a	user	defined	metric	must	be	built	in
• Use	“templating”	to	allow	input	from	user-defined	data	structures
• Cyclic	indices:	extend	by	half	principal	domain	either	way	&	build	“image”	leaves
• Status:	working	D-dimensional	𝒪(𝑁	log𝑁) implementation	exists	/	tested	on	Anti-kt
• Currently,	this	is	being	ported	to	C++	for	increased	speed	in	the	“coefficient”
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Conclusions	and	Ongoing	Work

• SIFT	is	a	SCALE	INVARIANT	clustering	algorithm	designed	specifically	for	substructure
• FILTER-ing of	soft	and	co-linear	radiation	can	be	done	as	the	jet	is	clustered
• Organization	of	the	data	structure	in	a	balanced	TREE can	make	clustering	fast

• The	clustering	history	holds	information – it	may	be	better	to	not	halt	at	fixed	radius.
• Could	the	algorithm	be	applied	to	existing	fat	jets	for	exclusive	clustering?
• What	is	the	jet-energy	resolution	width,	and	does	it	vary	with	PT?
• How	does	SIFT	fare	with	pileup	subtraction?
• How	does	the	absolute	mass	of	reconstructed	particles	connect?
• Is	the	distilled	clustering	history	amenable	to	machine	learning	applications?
• Can	SIFT	intrinsically	confront	the	problem	of	tagging	boosted	objects?
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Thank	You

(movie	notebook	available	upon	request	to	jwalker@shsu.edu	)
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