Higgs to ZZ and ZY in the SMEFT at NLO

Pier Paolo Giardino

Pheno 2018
University of Pittsburgh - 05/07/2018

BROOKHAVEN NATIONAL LABORATORY

• Why the SMEFT?

- Why the SMEFT?
- Why Complete?

- Why the SMEFT?
- Why Complete?
- Why NLO?

- Why the SMEFT?
- Why Complete?
- Why NLO?

H to ZZ is un-physical, first step to H to Zff

Why the SMEFT?

We can parametrize NP with small modifications of the SM couplings

$$g_{SM} \to \kappa \, g_{SM}, (\kappa - 1) \propto \frac{v^2}{\Lambda^2}$$

We can parametrize NP with small modifications of the SM couplings

$$g_{SM} \to \kappa \, g_{SM} (\kappa - 1) \propto \frac{v^2}{\sqrt{2}}$$

Small variation from SM=High energy scale!

A sounder approach is to introduce a set of gauge invariant operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{k=5}^{\infty} \sum_{i} \frac{\mathcal{C}_{i}^{k} \mathcal{O}_{i}^{k}}{\Lambda^{k-4}}$$

The resulting theory (SMEFT) allows perturbative calculations

A sounder approach is to introduce a set of gauge invariant operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{k=5}^{\infty} \sum_{i} \frac{\mathcal{C}_{i}^{k} \mathcal{O}_{i}^{k}}{\Lambda^{k-4}}$$

The resulting theory (SMEFT) allows perturbative calculations

Some work done:

$$H o ar bb, H o ar au au$$
 Gauld, etc. I 5, I 6.
 $H o \gamma\gamma$ Ghezzi, etc. I 5, Hartmann, etc. I 5. Dedes, etc. I 8
 $H o W^+W^-$ Ghezzi, etc. I 5
 $H o ZZ, H o Z\gamma$ Ghezzi, etc. I 5; Dawson, PPG I 8; plus complete (I st time) $v\leftrightarrow G_\mu$

A sounder approach is to introduce a set of gauge invariant operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{k=5}^{\infty} \sum_{i} \frac{\mathcal{C}_{i}^{k} \mathcal{O}_{i}^{k}}{\Lambda^{k-4}}$$

The resulting theory (SMEFT) allows perturbative calculations

Some work done:

Still a lot to do!

$$H o ar bb, H o ar au au$$
 Gauld, etc. 15, 16.
 $H o \gamma\gamma$ Ghezzi, etc. 15, Hartmann, etc. 15. Dedes, etc. 18
 $H o W^+W^-$ Ghezzi, etc. 15
 $H o ZZ, H o Z\gamma$ Ghezzi, etc. 15:
 Dawson, PPG 18; plus complete (1st time) $v\leftrightarrow G_W$

Why Complete?

There are ~2500 Dimension-6 Operators in SMEFT

There are ~2500 Dimension-6 Operators in SMEFT

59 after imposing fermion symmetries

There are ~2500 Dimension-6 Operators in SMEFT

59 after imposing fermion symmetries

7 operators enter $H\rightarrow ZZ$ at LO and 12+7 at NLO

\mathcal{O}_W	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$	\mathcal{O}_{ϕ}	$(\phi^\dagger\phi)^3$	$\mathcal{O}_{\phi\square}$	$(\phi^\dagger\phi)\Box(\phi^\dagger\phi)$
$\mathcal{O}_{\phi D}$	$\left(\!$	$\mathcal{O}_{u\phi} \atop p,r$	$(\phi^{\dagger}\phi)(\bar{q}_p'u_r'\widetilde{\phi})$	$\mathcal{O}_{\phi W}$	$(\phi^{\dagger}\phi) W_{\mu\nu} W^{\mu\nu}$
$\mathcal{O}_{\phi B}$	$(\phi^{\dagger}\phi)B_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger} \tau^I \phi) W^I_{\mu\nu} B^{\mu\nu}$	O_{uW}	$\left (\bar{q}_p' \sigma^{\mu\nu} u_r') \tau^I \widetilde{\phi} W_{\mu\nu}^I \right $
$\left\ \mathcal{O}_{uB} \atop p,r \right\ $	$(\bar{q}_p' \sigma^{\mu\nu} u_r') \widetilde{\phi} B_{\mu\nu}$	$\mathcal{O}_{\phi l}^{(1)}$	$\left (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{l}'_{p} \gamma^{\mu} l'_{r}) \right $	$\left \begin{array}{c} \mathcal{O}_{\phi l}^{(3)} \\ p,r \end{array} \right $	$(\phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu}^{I} \phi) (\bar{l}_{p}^{\prime} \tau^{I} \gamma^{\mu} l_{r}^{\prime})$
$\left\ \mathcal{O}_{\phi e} \right\ _{p,r}$	$\left (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{e}'_{p} \gamma^{\mu} e'_{r}) \right $	$\mathcal{O}_{\phi q}^{(1)}$ p,r	$\left (\phi^{\dagger} i \overleftrightarrow{D}_{\mu} \phi) (\bar{q}'_{p} \gamma^{\mu} q'_{r}) \right $	$\left \begin{array}{c} \mathcal{O}_{\phi q}^{(3)} \\ p,r \end{array} \right $	$\left (\phi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \phi) (\bar{q}_{p}^{\prime} \tau^{I} \gamma^{\mu} q_{r}^{\prime}) \right $
$\left\ \mathcal{O}_{\phi u} ight{p,r}$	$\left (\phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \phi) (\bar{u}'_{p} \gamma^{\mu} u'_{r}) \right $	$\mathcal{O}_{\phi d} \ _{p,r}$	$\left (\phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \phi) (\bar{d}'_{p} \gamma^{\mu} d'_{r}) \right $	$egin{aligned} \mathcal{O}_{ll} \ p,r,s,t \end{aligned}$	$(\bar{l}'_p \gamma_\mu l'_r)(\bar{l}'_s \gamma^\mu l'_t)$
$\left\ \mathcal{O}_{lq}^{(3)} \right\ _{p,r,s,t}$	$\left (\bar{l}'_p \gamma_\mu \tau^I l'_r) (\bar{q}'_s \gamma^\mu \tau^I q'_t) \right $				

Let's concentrate on the LO

Why NLO?

Actual Loop calculation

54 diagrams in the SM

$$H\rightarrow ZZ$$
, $M_H=200$ GeV, $\Lambda=1$ TeV

Operators that do not appear at LO could be less constrained

Large contributions!

$$H\rightarrow ZZ$$
, $M_H=200$ GeV, $\Lambda=1$ TeV

Operators that do not appear at LO could be less constrained

Large contributions!

Notice that Logs are predominant

Why NLO?

Not true in general!

Not true in general!

$$H\rightarrow ZZ$$
, $M_H=200$ GeV, $\Lambda=1$ TeV

A complete computation of the NLO contribution is necessary

We can parametrize NP with the SMEFT.

- We can parametrize NP with the SMEFT.
- NLO can have large effects.

- We can parametrize NP with the SMEFT.
- NLO can have large effects.
- Calculation of Logs is often not sufficient.

- We can parametrize NP with the SMEFT.
- NLO can have large effects.
- Calculation of Logs is often not sufficient.
- This is the first step towards the physical decay.

Backup Slides

SMEFTNLO vs. SMNLO

$$H\rightarrow ZZ$$
, $M_H=200$ GeV, $\Lambda=1$ TeV

For reasonable values of the parameter the difference could be of order 10%

$$H\rightarrow ZZ$$
, $M_H=200$ GeV, $\Lambda=1$ TeV

