New Physics Scale from Higgs Observables with Effective Dimension-6 Operators

S. Nandi

Oklahoma State University, Oklahoma Center for High Energy Physics

and Visiting Professor at Rice University

(in collaboration with Sudip Jana)

S. Jana and S. Nandi, arXiv:1710.00619 [hep-Ph]

Talk present at the Phenomenology Symposium, 2018

University of Pittsburgh, PA, May 7-9, 2[018](#page-0-0)

 Ω

S. Nandi OK State Company of the Company o

- Can we infer the scale of new physics from the current or future measurements of the Higgs observable at the LHC? How ?
	- ∗∗ Approach : New physics at a scale M will appear as effective higher dimensional operator suppressed by suitable powers of M.
		- Introduce a new set of effective dimension-6 operators most relevant for Higgs observables.
		- **Study the constraints imposed on this operators and new** physics scale from the measured Higgs observables at the LHC.

(□) () +)

化重新润滑

Outline of Talk

メロト メ何 トメミトメミト

- **Brief Introduction**
- **Formalism**
- **Analysis of the Higgs observable for LHC measurements using** effective dimension 6 operators
- **E** Limits and predictions on the $t\bar{t}h$ and hh production cross-sections from the LHC data.

S. Nandi OK State Company of the Company o

Conclusions

メロト マ何 トマ ヨ トマ ヨト

- If there is new physics beyond the SM, it will manifest as effective interactions with a new mass scale.
- Simplest operators for new physics for Higgs observable are of dimension-6
- **These operators arise in the Yukawa sector, EW gauge sector,** strong sector, as well as the Higgs potential.

 $\left\{ \left\vert \left\langle \left\langle \left\langle \left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\vert \left\langle \left\langle \left\langle \left\langle \cdot \right\rangle \right\rangle \right\rangle \right\rangle \right\vert \right\} \right.$

- We need to make judicious choice which are the most relevant for altering Higgs physics observables.
- 1 Q1 : After we have used the constraints, can be the $t\bar{t}h$ production be sufficiently enhanced or suppressed compare to SM predictions?
- **2 Q2** : Can the double-Higgs production be enhanced sufficiently to be observed in run II of LHC?

 Ω

- Relevant Dimension-6 operators we use:
	- EW Yukawa sector:

$$
\mathcal{L}_{\gamma_{uk}}^{(6)} \supset \frac{y_t^{(6)}}{M^2} (\bar{t}_L, \bar{b}_L) t_R \tilde{H}(H^{\dagger} H) + \frac{y_b^{(6)}}{M^2} (\bar{t}_L, \bar{b}_L) b_R H(H^{\dagger} H) + \frac{y_\tau^{(6)}}{M^2} (\bar{\nu}_\tau, \bar{\tau}_L) \tau_R H(H^{\dagger} H) + h.c. \quad (1)
$$

• Strong sector:

$$
\mathcal{L}^{(6)}_{Strong} \supset \frac{g^{(6)}}{M^2} G^{\mu\nu a} G_{\mu\nu a}(H^{\dagger}H) \tag{2}
$$

メロメ メ御 メメ きょ メ ヨメ

• EW gauge sector:

$$
\mathcal{L}_{EWgauge}^{(6)} \supset \frac{y_g^{(6)}}{M^2} (D^\mu H)^\dagger (D_\mu H) (H^\dagger H) \tag{3}
$$

• Scalar Potential:

$$
\mathcal{L}^{(6)}_{Scalar} \supset \frac{\lambda^{(6)}}{M^2} (H^{\dagger} H)^3 \tag{4}
$$

The relevant parameters in our analysis :

$$
\left\{ y_t^{(6)}, y_b^{(6)}, y_g^{(6)}, g^{(6)}, \lambda^{(6)}, M \right\} \tag{5}
$$

K □ ▶ K ⑦ ▶ .

경계 예정기

 Ω

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q Q

- The operator ${\cal L}^{(6)}_{EW gauge}$ modifies the Higgs kinetic term ${1\over 2} \partial^\mu h \partial_\mu h$ to $\left(1+\frac{y_{g}^{(6)}v^2}{2M^2}\right)$ 2M² $\Big) \, \frac{1}{2} \partial^\mu h \partial_\mu h$. (Throughout our analysis, we use the convention $H = \begin{pmatrix} 0 \ \frac{h+\nu}{\sqrt{2}} \end{pmatrix}$ in unitary gauge). 2
- \blacksquare Hence, we need to redefine the Higgs field by dividing out with the factor $N = \left(1 + \frac{y_{g}^{(6)}v^2}{2M^2}\right)$ $2M^2$ $1^{1/2}$ to get the canonically normalized form for the kinetic term $\frac{1}{2}\partial^{\mu}h\partial_{\mu}h$.

 290

This modifies the Higgs coupling to the SM by suitable factor, such as :

$$
\kappa_V = \left[\frac{1}{N^2} + \frac{y_g^{(6)}v^2}{M^2N^4}\right],
$$
\n
$$
\kappa_t = \left[\frac{1}{N} + \frac{y_b^{(6)}v^3}{\sqrt{2m_tM^2N^3}}\right],
$$
\n
$$
\kappa_b = \left[\frac{1}{N} + \frac{y_b^{(6)}v^3}{\sqrt{2m_bM^2N^3}}\right],
$$
\n
$$
\kappa_T = \left[\frac{1}{N} + \frac{y_f^{(6)}v^3}{\sqrt{2m_TM^2N^3}}\right],
$$
\n
$$
\kappa_g = \left[1.034\kappa_t + \epsilon_b\kappa_b + \frac{4\pi g^{(6)}v^2}{\alpha_sN^2M^2}\right] / [1.034 + \epsilon_b],
$$
\n
$$
\kappa_{\gamma\gamma} = \left|\frac{\frac{4}{3}\kappa_tF_{1/2}(m_h) + \kappa_VF_1(m_h)}{\frac{4}{3}F_{1/2}(m_h) + F_1(m_h)}\right|,
$$
\n
$$
\kappa_{Z\gamma} = \left|\frac{\frac{2}{\cos\theta_W}(1 - \frac{8}{3}\sin^2\theta_W) \kappa_tF_{1/2}(m_h) + \kappa_VF_1(m_h)}{\frac{2}{\cos\theta_W}(1 - \frac{8}{3}\sin^2\theta_W) F_{1/2}(m_h) + F_1(m_h)}\right|
$$
\n(8)

Phenomenological analysis :

- We use the results for 36 fb^{-1} data for Higgs observable for the LHC.
- **Parameter space we use**

$$
\left\{ y_t^{(6)}, y_b^{(6)}, y_g^{(6)}, g^{(6)}, \lambda^{(6)}, M \right\} \tag{6}
$$

The signal strength μ **, defined as the ratio of the measured Higgs** boson rate to its SM prediction, is used to characterize the Higgs boson yields and it is given by :

$$
\mu_f^i = \frac{\sigma^i \cdot BR_f}{(\sigma^i)_{SM} \cdot (BR_f)_{SM}} = \mu^i \cdot \mu_f. \tag{7}
$$

不重 的

Signal Strength Constraints on Higgs Observables at \mathcal{H} C

4 0 F

[New Physics Scale from Higgs Observables with Effective Dimension-6 Operators](#page-0-0)

 $\alpha \curvearrowright$

- **E** Effect of the Yukawa sector only, then add Yukawa plus EW gauge, then add strong, and finally add Higgs potential.
- : Yukawa sector only

\n- Top
$$
y_t^{(6)}
$$
 and bottom Yukawa $y_b^{(6)}$ play key roles.
\n- Y_t^{(6)} \Rightarrow Single Higgs production
\n- Y_b^{(6)} \Rightarrow h \rightarrow b\bar{b} decay
\n

S. Nandi OK State Company of the Company o

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

э.

■ We include effect on all the Higgs observables.

Results :

メロメメ 倒 メメ きょく きょう

- Add the Effect from the EW gauge sector
- Its impact is less than the dimension 6 Yukawa couplings.
- Because it plays lesser role in single Higgs production in ggF .
- It does modify $h \to WW$, ZZ in a significant way.
- As $y_h^{(6)}$ $\delta^{(6)}_b$ gets larger values to enhance $h\to b\bar b$, $y_{\rm g}^{(6)}$ has to get larger to satisfy the Higgs constraints.

Results :

TAT

Analysis strategy:

റെ ര

- Add the effect from the strong sector. Consider bothtin dividual and combined
- Major effect \Rightarrow On single Higgs and di-Higgs productions
- With this, the diagram contributing to di-Higgs production is shown in following Figs.

Analysis :

メロメ メ御 メメ きょ メ ヨメ

- **■** In SM, $\sigma_{hh} \sim 33$ fb \Rightarrow too small to be measured when we consider final state signal such as one $h \to b\bar{b}$, the other $h \to \gamma\gamma$.
- Addition of $g^{(6)} \Rightarrow$ can have big effect on di-Higgs production.
- We consider the signal strength for di-Higgs production relative to the SM expectation μ_{hh} as $\mu_{hh} = \frac{\sigma(pp \to hh)_{\text{NewPhysics}}}{\sigma(pp \to hh)_{\text{SM}}}$ $\frac{op \rightarrow nnj_{NewPhysics}}{\sigma(pp \rightarrow hh)_{SM}}$.

Results :

Results :

イロメ イ団メ イモメ イモメー

- If $y_t^{(6)} = y_b^{(6)} = 0 \Rightarrow g^{(6)}$ has to be very small ~ 0 unless the new mass scale > 2 TeV (BP1) to satisfy Higgs observables.
- However, when non-zero $y_t^{(6)}$ and $y_b^{(6)}$ $b^{(0)}$ are included, there are considerable region of parameter space which satisfy Higgs observable constraints and new physics scale can be much lower.
- For example, for BP's 3,4,5,6,7,8, $g^{(6)}$ can be as large as 0.06, and $\mu_{\tilde{t}}$ can be as large as 2.5.
- \blacksquare In some of this allowed region, di-Higgs production can be as large as 6 times of the SM prediction.

メロメメ 倒 メメ きょく きょう

- The effect of dimension 6 operator depends on $(coupling⁽⁶⁾)²/M²$.
- Thus, we need to know (coupling⁽⁶⁾) to determine the mass scale.
- We assume $(\mathit{coupling}^{(6)})^2/(4\Pi)$ satisfy the perturbativity limit so, $(coupling⁽⁶⁾)$ < 3.5.

Determination of new mass scale :

- \blacksquare Fig. shows the limit for the scan of the new physics scale satisfying constraints for the Higgs observables.
- We find that for a judicious choice of parameter space $(g^{(6)}=-0.01,y_g^{(6)}=0,y_t^{(6)}=1,y_b^{(6)}=-0.2)$, the new physics scale M can be as low as ∼500 GeV. イロト イ押 トイヨ トイヨ トー

- **This gives large effect for di-Higgs production.**
- For some region of the 6-dimensional parameter space, di-Higgs production cross-section can be as large as \sim 10 or more times of the SM.
- **This could make it potentially observable a[t th](#page-20-0)[e](#page-22-0) [en](#page-20-0)[d](#page-21-0) [o](#page-22-0)[f r](#page-0-0)[un](#page-22-0) [II.](#page-0-0)**

S. Nandi Excluded region is black-meshed region is black-meshed region is black-meshed region. OK State

 Ω

Conclusions :

メロメメ 御き メミメメ ミド

- We explore the effect of relevant dimension-6 operators on the Higgs observables
- Included $\left\{ y_t^{(6)}, y_b^{(6)} \right\}$ $b^{(6)}, y^{(6)}_g, g^{(6)}, \lambda^{(6)}, M$
- There are significant allowed region for which constarints for all the Higgs observable be satisfied.
- $t\bar{t}h$ production can be as large as 2.5 times the SM
- \blacksquare To estimate the mass scale, we have assumed perturbativity constraints, $(\operatorname{\textit{coupling}}^{(6)})^2/(4\Pi) < 1.$
- Mass scale as low as ∼ 500 GeV allowed.
- Di-Higgs production can be as large as \sim 10 or more times of the SM.