New Physics Scale from Higgs Observables with Effective Dimension-6 Operators

S. Nandi

Oklahoma State University,
Oklahoma Center for High Energy Physics
and
Visiting Professor at Rice University

(in collaboration with Sudip Jana)
S. Jana and S. Nandi, arXiv:1710.00619 [hep-Ph]

Goals

- Can we infer the scale of new physics from the current or future measurements of the Higgs observable at the LHC? How ?
 - ** **Approach**: New physics at a scale M will appear as effective higher dimensional operator suppressed by suitable powers of M.
 - Introduce a new set of effective dimension-6 operators most relevant for Higgs observables.
 - Study the constraints imposed on this operators and new physics scale from the measured Higgs observables at the LHC.

Outline of Talk

- Brief Introduction
- Formalism
- Analysis of the Higgs observable for LHC measurements using effective dimension 6 operators
- Limits and predictions on the $t\bar{t}h$ and hh production cross-sections from the LHC data.
- Conclusions

Brief Introduction

- If there is new physics beyond the SM, it will manifest as effective interactions with a new mass scale.
- Simplest operators for new physics for Higgs observable are of dimension-6
- These operators arise in the Yukawa sector, EW gauge sector, strong sector, as well as the Higgs potential.

Brief Introduction

- We need to make judicious choice which are the most relevant for altering Higgs physics observables.
- **Q1**: After we have used the constraints, can be the $t\bar{t}h$ production be sufficiently enhanced or suppressed compare to SM predictions?
- **Q2**: Can the double-Higgs production be enhanced sufficiently to be observed in run II of LHC?

- Relevant Dimension-6 operators we use:
 - EW Yukawa sector:

$$\mathcal{L}_{Yuk}^{(6)} \supset \frac{y_{t}^{(6)}}{M^{2}} (\bar{t}_{L}, \bar{b}_{L}) t_{R} \tilde{H}(H^{\dagger} H) + \frac{y_{b}^{(6)}}{M^{2}} (\bar{t}_{L}, \bar{b}_{L}) b_{R} H(H^{\dagger} H)
+ \frac{y_{\tau}^{(6)}}{M^{2}} (\bar{\nu}_{\tau}, \bar{\tau}_{L}) \tau_{R} H(H^{\dagger} H) + h.c. \quad (1)$$

• Strong sector:

$$\mathcal{L}_{Strong}^{(6)} \supset \frac{\mathcal{g}^{(6)}}{M^2} G^{\mu\nu a} G_{\mu\nu a} (H^{\dagger} H)$$
 (2)

• EW gauge sector:

$$\mathcal{L}^{(6)}_{EWgauge} \supset \frac{y_g^{(6)}}{M^2} (D^{\mu}H)^{\dagger} (D_{\mu}H) (H^{\dagger}H)$$
 (3)

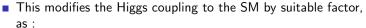
Scalar Potential:

$$\mathcal{L}_{Scalar}^{(6)} \supset \frac{\lambda^{(6)}}{M^2} (H^{\dagger} H)^3 \tag{4}$$

■ The relevant parameters in our analysis :

$$\left\{ y_t^{(6)}, y_b^{(6)}, y_g^{(6)}, g^{(6)}, \lambda^{(6)}, M \right\}$$
 (5)

- The operator $\mathcal{L}^{(6)}_{EWgauge}$ modifies the Higgs kinetic term $\frac{1}{2}\partial^{\mu}h\partial_{\mu}h$ to $\left(1+\frac{y_g^{(6)}v^2}{2M^2}\right)\frac{1}{2}\partial^{\mu}h\partial_{\mu}h$. (Throughout our analysis, we use the convention $H=\begin{pmatrix}0\\\frac{h+v}{\sqrt{2}}\end{pmatrix}$ in unitary gauge).
- Hence, we need to redefine the Higgs field by dividing out with the factor $N = \left(1 + \frac{y_g^{(6)} v^2}{2M^2}\right)^{1/2}$ to get the canonically normalized form for the kinetic term $\frac{1}{2} \partial^{\mu} h \partial_{\mu} h$.



$$\kappa_{V} = \left[\frac{1}{N^{2}} + \frac{y_{g}^{(6)} v^{2}}{M^{2} N^{4}} \right],$$

$$\kappa_{t} = \left[\frac{1}{N} + \frac{y_{t}^{(6)} v^{3}}{\sqrt{2m_{t} M^{2} N^{3}}} \right],$$

$$\kappa_{b} = \left[\frac{1}{N} + \frac{y_{b}^{(6)} v^{3}}{\sqrt{2m_{b} M^{2} N^{3}}} \right],$$

$$\kappa_{\tau} = \left[\frac{1}{N} + \frac{y_{\tau}^{(6)} v^{3}}{\sqrt{2m_{\tau} M^{2} N^{3}}} \right],$$

$$\kappa_{g} = \left[1.034 \kappa_{t} + \epsilon_{b} \kappa_{b} + \frac{4\pi g^{(6)} v^{2}}{\alpha_{s} N^{2} M^{2}} \right] / [1.034 + \epsilon_{b}],$$

$$\kappa_{\gamma\gamma} = \left[\frac{\frac{4}{3} \kappa_{t} F_{1/2}(m_{h}) + \kappa_{V} F_{1}(m_{h})}{\frac{4}{3} F_{1/2}(m_{h}) + F_{1}(m_{h})} \right],$$

$$\kappa_{Z\gamma} = \left[\frac{\frac{2}{\cos \theta_{W}} \left(1 - \frac{8}{3} \sin^{2} \theta_{W} \right) \kappa_{t} F_{1/2}(m_{h}) + \kappa_{V} F_{1}(m_{h})}{\frac{2}{\cos \theta_{W}} \left(1 - \frac{8}{3} \sin^{2} \theta_{W} \right) F_{1/2}(m_{h}) + F_{1}(m_{h})} \right]$$

Phenomenological analysis:

- We use the results for 36 fb⁻¹ data for Higgs observable for the LHC.
- Parameter space we use

$$\left\{ y_t^{(6)}, \ y_b^{(6)}, \ y_g^{(6)}, \ g^{(6)}, \ \lambda^{(6)}, \ M \right\}$$
 (6)

■ The signal strength μ , defined as the ratio of the measured Higgs boson rate to its SM prediction, is used to characterize the Higgs boson yields and it is given by :

$$\mu_f^i = \frac{\sigma^i \cdot BR_f}{(\sigma^i)_{SM} \cdot (BR_f)_{SM}} = \mu^i \cdot \mu_f. \tag{7}$$

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ ○

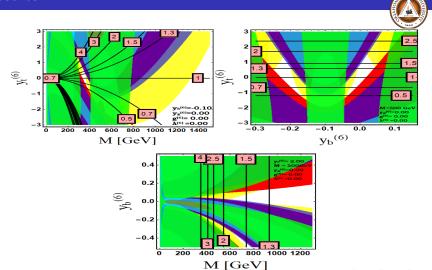
Signal Strength Constraints on Higgs Observables at C

Decay channel	Production Mode	CMS	ATLAS
27	ggF	$1.05^{+0.19}_{-0.19}$	$0.80^{+0.19}_{-0.18}$
	VBF	$0.6^{+0.6}_{-0.5}$	$2.1^{+0.6}_{-0.6}$
	Wh	$3.1^{+1.50}_{-1.30}$	$0.7^{+0.9}_{-0.8}$
	Zh	$0.0^{+0.9}_{-0.0}$	$0.7^{+0.9}_{-0.8}$
ZZ*	ggF	$1.20^{+0.22}_{-0.21}$	$1.11^{+0.23}_{-0.27}$
	VBF	$0.05^{+1.03}_{-0.05}$	$4.0^{+2.1}_{-1.8}$
	Wh	$0.0^{+2.66}_{-0.00}$	< 3.8
	Zh	$0.0^{+2.66}_{-0.00}$	< 3.8
W ⁺ W ⁻	ggF	$0.9^{+0.40}_{-0.30}$	$1.02^{+0.29}_{-0.26}$
	VBF	$1.4^{+0.8}_{-0.8}$	$1.7^{+1.1}_{-0.9}$
	Vh	$2.1^{+2.3}_{-2.2}$	$3.2^{+4.4}_{-4.2}$
	ggF + VBF + Vh	$1.05^{+0.26}_{-0.26}$	-
ЬĒ	Vh	$1.0^{+0.5}_{-0.5}$	$0.9^{+0.28}_{-0.26}$
τ+τ-	ggF	$1.05^{+0.49}_{-0.46}$	$2.0^{+0.8}_{-0.8}$
	VBF + Vh	$1.07^{+0.45}_{-0.43}$	$1.24^{+0.58}_{-0.54}$
	ggF + VBF + Vh	$1.06^{+0.25}_{-0.24}$	$1.43^{+0.43}_{-0.37}$

Analysis strategy:

- Effect of the Yukawa sector only, then add Yukawa plus EW gauge, then add strong, and finally add Higgs potential.
- : Yukawa sector only
 - Top $y_t^{(6)}$ and bottom Yukawa $y_b^{(6)}$ play key roles.
 - $y_t^{(6)}$ \Rightarrow Single Higgs production $y_b^{(6)}$ \Rightarrow $h \rightarrow b\bar{b}$ decay
- We include effect on all the Higgs observables.

Results:

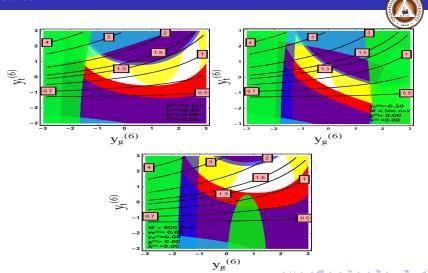


《ロト《御ト《恵》《恵》《恵》 (墓 少) (C S. Nandi

Analysis strategy:

- Add the Effect from the EW gauge sector
- Its impact is less than the dimension 6 Yukawa couplings.
- Because it plays lesser role in single Higgs production in *ggF*.
- It does modify $h \rightarrow WW, ZZ$ in a significant way.
- As $y_b^{(6)}$ gets larger values to enhance $h \to b\bar{b}$, $y_g^{(6)}$ has to get larger to satisfy the Higgs constraints.

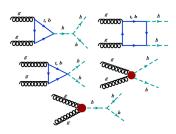
Results:



□ > <□ > < □ > < □ >

Analysis strategy:

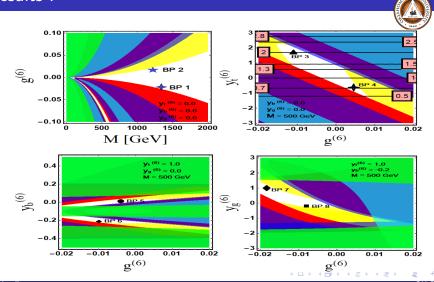
- Add the effect from the strong sector. Consider bothtin dividual and combined
- lacktriangle Major effect \Rightarrow On single Higgs and di-Higgs productions
- With this, the diagram contributing to di-Higgs production is shown in following Figs.



Analysis:

- In SM, $\sigma_{hh} \sim 33$ fb \Rightarrow too small to be measured when we consider final state signal such as one $h \to b\bar{b}$, the other $h \to \gamma\gamma$.
- Addition of $g^{(6)}$ \Rightarrow can have big effect on di-Higgs production.
- We consider the signal strength for di-Higgs production relative to the SM expectation μ_{hh} as $\mu_{hh} = \frac{\sigma(pp \to hh)_{NewPhysics}}{\sigma(pp \to hh)_{SM}}$.

Results:



S. Nandi OK State

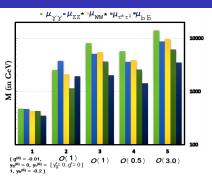
Results:

- If $y_t^{(6)} = y_b^{(6)} = 0 \Rightarrow g^{(6)}$ has to be very small ~ 0 unless the new mass scale > 2 TeV (BP1) to satisfy Higgs observables.
- However, when non-zero $y_t^{(6)}$ and $y_b^{(6)}$ are included, there are considerable region of parameter space which satisfy Higgs observable constraints and new physics scale can be much lower.
- For example, for BP's 3,4,5,6,7,8, $g^{(6)}$ can be as large as 0.06, and $\mu_{t\bar{t}h}$ can be as large as 2.5.
- In some of this allowed region, di-Higgs production can be as large as 6 times of the SM prediction.

Determination of new mass scale:

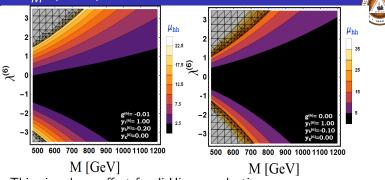
- The effect of dimension 6 operator depends on $(coupling^{(6)})^2/M^2$.
- lacksquare Thus, we need to know ($coupling^{(6)}$) to determine the mass scale.
- We assume $(coupling^{(6)})^2/(4\Pi)$ satisfy the perturbativity limit so, $(coupling^{(6)}) < 3.5$.

Determination of new mass scale:



- Fig. shows the limit for the scan of the new physics scale satisfying constraints for the Higgs observables.
- We find that for a judicious choice of parameter space $(g^{(6)} = -0.01, y_g^{(6)} = 0, y_t^{(6)} = 1, y_b^{(6)} = -0.2)$, the new physics scale M can be as low as ~ 500 GeV.

Effect of $\frac{\lambda^{(6)}}{M^2}(H^{\dagger}H)^3$:



- This gives large effect for di-Higgs production.
- \blacksquare For some region of the 6-dimensional parameter space, di-Higgs production cross-section can be as large as \sim 10 or more times of the SM.
- This could make it potentially observable at the end of run II.

Conclusions:

- We explore the effect of relevant dimension-6 operators on the Higgs observables
- Included $\left\{ y_t^{(6)}, \ y_b^{(6)}, \ y_g^{(6)}, \ g^{(6)}, \ \lambda^{(6)}, \ M \right\}$
- There are significant allowed region for which constarints for all the Higgs observable be satisfied.
- $t\bar{t}h$ production can be as large as 2.5 times the SM
- To estimate the mass scale, we have assumed perturbativity constraints, $(coupling^{(6)})^2/(4\Pi) < 1$.
- Mass scale as low as \sim 500 GeV allowed.
- \blacksquare Di-Higgs production can be as large as \sim 10 or more times of the SM.

