## Cosmology of Flavons

#### Ben Lillard, UC Irvine

#### PHENO 2018

University of Pittsburgh

#### "The Flavor of Cosmology" *with* M. Ratz, T. M. P. Tait, *and* S. Trojanowski arXiv:1804.03662



BENJAMIN LILLARD UC IRVINE

**PHENO 2018** MAY 7-9, 2018

## Models of Flavons

- \* Explain form of Yukawa matrix:  $y_{ij}^u \overline{Q}_i \Phi u_j \longrightarrow \left(\frac{S}{\Lambda}\right)^n \overline{Q}_i \Phi u_j$
- \* Froggatt–Nielsen:

\* 
$$\mathcal{L}_{\rm FN} \sim \left(\frac{S}{\Lambda}\right)^{n_{ij}^u} \overline{Q}_i \Phi u_j + \left(\frac{S}{\Lambda}\right)^{n_{ij}^d} \overline{Q}_i \widetilde{\Phi} d_j$$

\* Dimension-5 effective operators with scale  $\Lambda$ :



\* Ratio  $\langle S \rangle / \Lambda = \epsilon \simeq 0.23$  determines Yukawa couplings: for lighter quarks,  $y \sim \epsilon^n$ .

## Decays of Flavons

 $\Gamma_{\sigma} \sim \frac{m_{\sigma}^3}{64\pi^3 \Lambda 2} \Big|$ 

\* Flavons decay to Standard Model:

- Late-decaying flavons can spoil BBN
  - **IF** Flavon lifetime is sufficiently long
  - AND Enough flavons are produced

B. Lillard, M. Ratz, T. M. P. Tait, and S. Trojanowski, "The Flavor of Cosmology," arXiv:1804.03662 [hep-ph].

 $\sigma$ 

 $u_j, d_j$ 

## Flavon Production 1: Freeze-In

- Out-of-equilibrium flavon production
  - Solve Boltzmann equation

- Dominated by high-temperature limit
  - \* Flavon yield  $Y_{\sigma}$  scales linearly with  $T_R$

\* 
$$Y_{\sigma}^{\rm FI} \sim \frac{M_P T_R}{\Lambda^2}$$





$$Y_{\sigma} = \frac{n_{\sigma}}{S}$$

#### Flavon Production 2: Scalar Potential

\* Thermal effects add terms to scalar potential:

$$\mathscr{V}_{\text{eff}}(\sigma,T) = \gamma T_Y T^4 + \alpha T^4 \frac{\sigma}{\Lambda} + \frac{m_\sigma^2(T)}{2} \sigma^2 + \frac{\kappa}{3!} \sigma^3 + \frac{\lambda_S}{4} \sigma^4$$

Free energy of a Yukawa gas depends on coupling  $y^2$ ; expansion includes radial mode  $\sigma$ .



## Flavon Production 2: Scalar Potential

\* Thermal effects add terms to scalar potential Free energy of a Yukawa gas depends on coupling  $y^2$ , expansion includes radial mode  $\sigma$ .

$$\mathscr{V}_{\text{eff}}(\sigma,T) = \gamma T_Y T^4 + \alpha T^4 \frac{\sigma}{\Lambda} + \frac{m_{\sigma}^2(T)}{2} \sigma^2 + \frac{\kappa}{3!} \sigma^3 + \frac{\lambda_S}{4} \sigma^4$$

shifts flavon away from its T=0 minimum

Equations of motion for *σ* depend on temperature
Surprisingly, has analytic solution when cubic and quartic terms are dropped



## Constraining the Flavon

Larger  $\Lambda$  reduces the flavon yield, but increases lifetime:





## Constraining the Flavon



## In Conclusion:



\* Constraints apply to a general class of flavor models:

$$y \to \left(y + \frac{\sigma}{\Lambda} + \ldots\right)$$

B. Lillard, M. Ratz, T. M. P. Tait, and S. Trojanowski, "The Flavor of Cosmology," arXiv:1804.03662 [hep-ph].

# Nucleosynthesis (BBN)

- ★ Earlier flavon decay, 0.1–1 sec ≤  $τ_σ$  ≤ 100 sec, changes the neutron–proton ratio
  - Affects the <sup>4</sup>He mass fraction



Later flavon decay 100 sec ≤ τ<sub>σ</sub> breaks <sup>4</sup>He into deuterium:
<sup>4</sup>He → <sup>2</sup>H + <sup>2</sup>H

\* Flavons are sufficiently long-lived if  $m_{\sigma} \ll \Lambda$ :  $\tau_{\sigma} \sim \frac{64\pi^3 \Lambda^2}{m^3}$