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The era for non-canonical DM

๏ Ultra-light bosonic DM 

๏ If m~10^-22 eV, de Broglie wavelength ~ kpc, good for small scale 

๏ Large occupation number 

๏ Connection to SM: photon,  lepton, baryon, neutrino (Asher Berlin, Gordan 
Krnjaic, Pedro A. N. Machado, Lina Necib) etc

✦ Standard WIMP 

✦ CDM@small scale structure 

✦ Null result in direct detection



Ultralight bosonic DM
• Scalar DM model 

• Vector DM model 

• DM MSW effect for neutrinos 

• Solve classic E.O.M (p^2 = m^2) 

•
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Ultralight bosonic DM
• Dispersion relation:  

• Scalar DM model 

• Vector DM model 

• Neutrino effective potential in DM medium 

• Vacuum oscillation: 

• MSW oscillation at Earth: 

• Schrödinger equation: 
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Scalar DM case

• Linear term (classic) 

• Quadratic term (classic = QFT forward scattering) 

•
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Scalar DM case

• DM from Misalignment 

•
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Scalar DM case
• Naive estimation of constraints: 

• Local DM density: 0.3 GeV/cm^3 

• Expansion on Probability: 

• Modulation effect and Average shift 

• Modulation resolution for 1/m>10 min.
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Scalar DM case
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FIG. 2. ��2 curves from existing (thick solid curves) and future (thin dotted curves) analyses of neutrino oscillation data.
Shaded parameter regions are excluded by the current data. Panel (a) applies to scalar DM, panel (b) is for vector DM with
fixed polarization parallel to the ecliptic plane, and panel (c) is for unpolarized vector DM. For scalar DM, we have assumed
y = y0(m⌫/0.1 eV ), while for vector DM, we use a coupling structure inspired by Lµ�L⌧ symmetry, namely Qee = 0, Qµµ = 1,
Q⌧⌧ = �1. In panel (a), we show also a limit based on the cosmological constraint on

P
m⌫ .

FIG. 3. Predicted ⌫e survival probability for solar neutrinos
at the SM best fit point (blue) and at the best fit point in-
cluding neutrino interactions with polarized vector DM (red).
The best fit curves for unpolarized vector DM and for scalar
DM are similar to the SM curve. We compared to data from
Borexino [90], Super-Kamiokande [91], and SNO [92, 93].

are disfavored compared to the new physics hypothesis,
but it is important to emphasize that both hypotheses
lead to an acceptable overall goodness of fit. The pref-
erence for new physics is a reflection of the fact that the
upturn of the survival probability at low energy has not
been observed yet [89].

Comparing limits from solar neutrino observations to
those from long-baseline experiments, we see from fig. 2
that for unpolarized vector DM, solar neutrinos o↵er the

most powerful constraints. This is once again due to the
1/E⌫ dependence of V

e↵

in this case. Even though the
same scaling applies to scalar DM, solar limits are much
weaker because in our benchmark scenario, neutrino–DM
interactions alter only neutrino masses (to which solar
neutrinos have poor sensitivity), but not the mixing an-
gles. This is also the reason why the limits from ref. [56],
which rely on variations in the mixing angle ✓

12

, are not
applicable here.
Cosmological Constraints on

P
m⌫ . As pointed out in

ref. [58], interactions between neutrinos and ultra-light
scalar DM are constrained by the requirement that the
DM-induced contribution to the neutrino mass term does
not violate the cosmological limit on the sum of neutrino
masses,

P
m⌫ . We estimate this constraint in fig. 2 (a)

by requiring that, at recombination (redshift z = 1100),
the correction to the heaviest neutrino mass (taken at
0.05 eV) should not be larger than 0.1 eV.
Astrophysical Neutrinos. One may wonder whether

neutrino–DM interactions could inhibit the propagation
of astrophysical neutrinos [95] from distant sources [96].
The optical depth for such neutrinos is given by [97]
⌧⌫(E⌫) = �⌫�(E⌫)X�m

�1

� , with the DM column den-

sity X� ⌘ R
l.o.s

dl ⇢�, where the integral runs along the
line of sight. For both galactic and extragalactic neutrino
sources, we have typicallyX� ⇠ 1022–1023 GeV/cm2 [97].
The scattering cross section for vector DM is approxi-
mately
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where the superscript T indicates that, for simplicity, we
have only considered the transverse polarization states of

• Interaction assumption: 

• CMB constraint on neutrino 
mass 

• Complex y 

• Pseudo-scalar: axion

y = y0m⌫/(0.1eV)

Planck Collaboration: Cosmological parameters

6.4.1. Constraints on the total mass of active neutrinos

Detection of neutrino oscillations has proved that neutri-
nos have mass (see, e.g., Lesgourgues & Pastor 2006 and
Nakamura & Petcov 2014 for reviews). The Planck base⇤CDM
model assumes a normal mass hierarchy with

P
m⌫ ⇡ 0.06 eV

(dominated by the heaviest neutrino mass eigenstate) but there
are other possibilities, including a degenerate hierarchy withP

m⌫ >⇠ 0.1 eV. At this time there are no compelling theoreti-
cal reasons to strongly prefer any of these possibilities, so allow-
ing for larger neutrino masses is perhaps one of the most well-
motivated extensions to base ⇤CDM considered in this paper.
There has also been significant interest recently in larger neu-
trino masses as a possible way to lower �8 (the late-time fluctua-
tion amplitude), and thereby reconcile Planck with weak lensing
measurements and the abundance of rich clusters (see Sects. 5.5
and 5.6). Though model dependent, neutrino mass constraints
from cosmology are already significantly stronger than those
from tritium �-decay experiments (see, e.g., Drexlin et al. 2013).

Here we give constraints assuming three species of degener-
ate massive neutrinos, neglecting the small di↵erences in mass
expected from the observed mass splittings. At the level of sensi-
tivity of Planck this is an accurate approximation, but note that it
does not quite match continuously on to the base ⇤CDM model
(which assumes two massless and one massive neutrino withP

m⌫ = 0.06 eV). We assume that the neutrino mass is con-
stant, and that the distribution function is Fermi-Dirac with zero
chemical potential.

Masses well below 1 eV have only a mild e↵ect on the shape
of the CMB power spectra, since they became non-relativistic af-
ter recombination. The e↵ect on the background cosmology can
be compensated by changes in H0, to ensure the same observed
acoustic peak scale ✓⇤. There is, however, some sensitivity of
the CMB anisotropies to neutrino masses as the neutrinos start
to become less relativistic at recombination (modifying the early
ISW e↵ect), and from the late-time e↵ect of lensing on the power
spectrum. The Planck power spectrum (95 %) constraints are
X

m⌫ < 0.72 eV Planck TT+lowP, (54a)
X

m⌫ < 0.21 eV Planck TT+lowP+BAO, (54b)
X

m⌫ < 0.49 eV Planck TT,TE,EE+lowP, (54c)
X

m⌫ < 0.17 eV Planck TT,TE,EE+lowP+BAO. (54d)

The Planck TT+lowP constraint has a broad tail to high masses,
as shown in Fig. 29, which also illustrates the acoustic scale
degeneracy with H0. Larger masses imply a lower �8 through
the e↵ects of neutrino free-streaming on structure formation,
but the larger masses also require a lower Hubble constant,
leading to possible tensions with direct measurements of H0.
Masses below about 0.4 eV can provide an acceptable fit to
the direct H0 measurements, and adding the BAO data helps
to break the acoustic scale degeneracy and tightens the con-
straint on

P
m⌫ substantially. Adding Planck polarization data at

high multipoles produces a relatively small improvement to the
Planck TT+lowP+BAO constraint (and the improvement is even
smaller with the alternative CamSpec likelihood), so we consider
the TT results to be our most reliable constraints.

The constraint of Eq. (54b) is consistent with the 95 % limit
of
P

m⌫ < 0.23 eV reported in PCP13 for Planck+BAO. The
limits are similar because the linear CMB is insensitive to the
mass of neutrinos that are relativistic at recombination. There is
little to be gained from improved measurement of the CMB tem-
perature power spectra, though improved external data can help

Fig. 29. Samples from the Planck TT+lowP posterior in theP
m⌫–H0 plane, colour-coded by �8. Higher

P
m⌫ damps the

matter fluctuation amplitude �8, but also decreases H0. The
grey bands show the direct measurement, H0 = (70.6 ±
3.3) km s�1Mpc�1, Eq. (30). Solid black contours show the
constraint from Planck TT+lowP+lensing (which mildly prefers
larger masses), and filled contours show the constraints from
Planck TT+lowP+lensing+BAO.

to break the geometric degeneracy to higher precision. CMB
lensing can also provide additional information at lower red-
shifts, and future high-resolution CMB polarization measure-
ments that accurately reconstruct the lensing potential can probe
much smaller masses (see, e.g. Abazajian et al. 2015b).

As discussed in detail in PCP13 and Sect. 5.1, the Planck
CMB power spectra prefer somewhat more lensing smoothing
than predicted in⇤CDM (allowing the lensing amplitude to vary
gives AL > 1 at just over 2�). The neutrino mass constraint
from the power spectra is therefore quite tight, since increas-
ing the neutrino mass lowers the predicted smoothing even fur-
ther compared to base ⇤CDM. On the other hand the lensing
reconstruction data, which directly probes the lensing power,
prefers lensing amplitudes slightly below (but consistent with)
the base ⇤CDM prediction (Eq. 18). The Planck+lensing con-
straint therefore pulls the constraints slightly away from zero to-
wards higher neutrino masses, as shown in Fig. 30. Although the
posterior has less weight at zero, the lensing data are incompati-
ble with very large neutrino masses so the Planck+lensing 95 %
limit is actually tighter than the Planck TT+lowP result:
X

m⌫ < 0.68 eV (95%,Planck TT+lowP+lensing). (55)

Adding the polarization spectra improves this constraint slightly
to
X

m⌫ < 0.59 eV (95%,Planck TT,TE,EE+lowP+lensing).
(56)

We take the combined constraint that further includes BAO,
JLA, and H0 (“ext”) as our best limit:
X

m⌫ < 0.23 eV

⌦⌫h2 < 0.0025

9>>=
>>; 95%, Planck TT+lowP+lensing+ext.

(57)
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Vector DM case
• Linear term (classic): Only for fully polarized vector DM 

• Quadratic term (classic = QFT forward scattering): both fully polarized or 
unpolarized 

•

Ve↵ = � 1

2E⌫

⇣
2(p⌫ · �)gQ+ g2Q2�2

⌘

νL νL

φµ

νL νL νL

φµ

φµ

�µ = ⇠µ�0 cos(m�t)

Qµ�⌧ = 0, 1,�1



Vector DM case
• Linear term (classic): Only for fully polarized vector DM 

• Quadratic term (classic = QFT forward scattering): both fully polarized or 
unpolarized 

•

Ve↵ = � 1

2E⌫

⇣
2(p⌫ · �)gQ+ g2Q2�2

⌘

νL νL

φµ

νL νL νL

φµ

φµ

�µ = ⇠µ�0 cos(m�t)

Qµ�⌧ = 0, 1,�1

E⌫g�0 ⇠ m2
⌫

(g�0)
2 ⇠ m2

⌫



Vector DM case
Ve↵ = � 1

2E⌫

⇣
2(p⌫ · �)gQ+ g2Q2�2

⌘
4

10-11 10-10 10-9 10-8 10-7 10-6
0

10

20

30

40

50

g/mϕ[ eV-1]

Δχ
2

1σ
2σ

3σ

Polarized Vector

R
EN
O
Se
ns
iti
vi
ty

T2
K
Ex
cl
us
io
n

D
U
N
E
Se
ns
iti
vi
ty

S
O
LA
R
E
xc
lu
si
on

10-1 100 101 102
0

10

20

30

40

50

g/mϕ[ eV-1]

Δχ
2

1σ
2σ

3σ

Unpolarized Vector

T2
K
Ex
cl
us
io
n

D
U
N
E
S
en
si
tiv
ity

S
O
LA
R
E
xc
lu
si
on

R
E
N
O
S
en
si
tiv
ity

(a) (b) (c)

FIG. 2. ��2 curves from existing (thick solid curves) and future (thin dotted curves) analyses of neutrino oscillation data.
Shaded parameter regions are excluded by the current data. Panel (a) applies to scalar DM, panel (b) is for vector DM with
fixed polarization parallel to the ecliptic plane, and panel (c) is for unpolarized vector DM. For scalar DM, we have assumed
y = y0(m⌫/0.1 eV ), while for vector DM, we use a coupling structure inspired by Lµ�L⌧ symmetry, namely Qee = 0, Qµµ = 1,
Q⌧⌧ = �1. In panel (a), we show also a limit based on the cosmological constraint on

P
m⌫ .

FIG. 3. Predicted ⌫e survival probability for solar neutrinos
at the SM best fit point (blue) and at the best fit point in-
cluding neutrino interactions with polarized vector DM (red).
The best fit curves for unpolarized vector DM and for scalar
DM are similar to the SM curve. We compared to data from
Borexino [90], Super-Kamiokande [91], and SNO [92, 93].

are disfavored compared to the new physics hypothesis,
but it is important to emphasize that both hypotheses
lead to an acceptable overall goodness of fit. The pref-
erence for new physics is a reflection of the fact that the
upturn of the survival probability at low energy has not
been observed yet [89].

Comparing limits from solar neutrino observations to
those from long-baseline experiments, we see from fig. 2
that for unpolarized vector DM, solar neutrinos o↵er the

most powerful constraints. This is once again due to the
1/E⌫ dependence of V

e↵

in this case. Even though the
same scaling applies to scalar DM, solar limits are much
weaker because in our benchmark scenario, neutrino–DM
interactions alter only neutrino masses (to which solar
neutrinos have poor sensitivity), but not the mixing an-
gles. This is also the reason why the limits from ref. [56],
which rely on variations in the mixing angle ✓

12

, are not
applicable here.
Cosmological Constraints on

P
m⌫ . As pointed out in

ref. [58], interactions between neutrinos and ultra-light
scalar DM are constrained by the requirement that the
DM-induced contribution to the neutrino mass term does
not violate the cosmological limit on the sum of neutrino
masses,

P
m⌫ . We estimate this constraint in fig. 2 (a)

by requiring that, at recombination (redshift z = 1100),
the correction to the heaviest neutrino mass (taken at
0.05 eV) should not be larger than 0.1 eV.
Astrophysical Neutrinos. One may wonder whether

neutrino–DM interactions could inhibit the propagation
of astrophysical neutrinos [95] from distant sources [96].
The optical depth for such neutrinos is given by [97]
⌧⌫(E⌫) = �⌫�(E⌫)X�m

�1

� , with the DM column den-

sity X� ⌘ R
l.o.s

dl ⇢�, where the integral runs along the
line of sight. For both galactic and extragalactic neutrino
sources, we have typicallyX� ⇠ 1022–1023 GeV/cm2 [97].
The scattering cross section for vector DM is approxi-
mately
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where the superscript T indicates that, for simplicity, we
have only considered the transverse polarization states of

• Some thoughts: m~10^-22 eV, g<10^-30!!!!



Ultralight DM Summary
• We introduce ultralight bosonic DM and non-standard 

interaction with neutrinos 

• Stringent constraints from oscillation: 

• Scalar, unpolarized Vector: y/m <~ eV  

• Polarized Vector: y/m<~10^-10 eV 

• Linear term apply when classic field description holds, #>>1 
(m<10^-16 eV, if neutrino coherent length L ~ 10^-10m) 

•  Quadratic term always applies (QFT forward scattering), 
valid for any DM mass


