Search for rare and exotic Higgs Boson decay modes and Higgs Boson pair production with the ATLAS detector

Arxiv1804.06174 Arxiv1802.03388

2017 hh4b and hXX4I results

Tony(Baojia)Tong, Harvard University <u>Pheno, May 8, 2018</u>

From the SM Higgs Boson

- Two rare yet known process
 - $h \rightarrow ZZ^* \rightarrow IIII small branching ratio$ but very clean signature
 - hh → bbbb small cross section at $13 \text{ TeV} \sim 11.3 \text{ fb} (\text{NNLO} + \text{NNLL})$

D.Florian, J.Mazzitelli, Arxiv1505.07122

(Harvard)

To beyond SM physics

- Two possible enhancements
 - $h \rightarrow XX \rightarrow IIII$
 - new vector boson Zd
 - pseudo-scalar a₀
 - hh → bbbb
 - non resonant enhancements
 - tth vertex modifications
 - \bullet modified λ_{nnn} triple-Higgs coupling
 - resonant enhancements $X \rightarrow hh$
 - KK Graviton, spin 2
 - Heavy Higgs: 2HDM, spin 0

Higgs to 41 event topology

HH4b: selection

Channels: low mass + high mass

- Split because only muons are measured well at low momentum
- Require 2 pairs of same flavor opposite sign leptons, firing di/tri-lepton triggers
- Select quadruplet with smallest $\Delta m_{\parallel} = |m_{12} m_{34}|$

Low M (X 1–15		
рт > 5 (
120 < m ₄₁ <		
0.88 < m _{12,34}		

(Harvard)

HXX4I: selection

Arxiv1802.03388

High Mass ass (X 15-62 GeV) GeV) $p_T > 7 \text{ GeV}$ GeV $p_T > 5 \text{ GeV}$ $115 < m_{41} < 130 \text{ GeV}$ 130 GeV $5 < m_{12,34} < 64 \text{ GeV}$ < 20 GeV $5 < m_{14,32} < 75 \text{ GeV}$

*m12 is defined to be the pair closer to $m_{Z_{-}}$

Backgrounds and validation

- Backgrounds are SM Higgs to ZZ* to 4I, or non-resonant ZZ* to 4I \bullet
- Validate with reversed m₄₁ requirements

Signal region: $\langle m_{\parallel} \rangle = (m_{12} + m_{34})/2$

HXX4I: results

Arxiv1802.03388

Limits for Higgs to Z_dZ_d

• Discontinuity due to the addition of sensitivity to 4e and 2e2µ final states (lowering the limit).

• The shaded areas are the quarkonia veto regions.

(Harvard)

Tony Tong

Arxiv1802.03388

di-Higgs to 4b event topology

HXX4I: selection

.89 Te

<u>m_{2j} ~ 3</u>.

Run Number: 310738, Event Number: 181036209

Date: 2016-10-17 03:17:19 CEST

Channels: Resolved + Boosted

- Standard resolved 4b jets for the standard resolved 4b jets f
- 1.5 TeV resonance $\rightarrow \sim 600$ G

(Harvard)

Tony Tong

NO CO

the low mass range					
GeV Higgs $\rightarrow \Delta R_{bb} \sim 2m_h/p \sim 0.4$					
d GeV)	Boosted (1000-3000 GeV)	R=1.			
gger	Large R-jet Trigger				
Jets	Two R=1.0 trimmed Jets	Б			
GeV	Leading > 450 GeV Subleading > 250 GeV	b			
)	70% WP on R= 0.2 track-jets				

Efficiency

Acceptance

0.18

0.16

0.12

0.1

0.08

0.04

0.02

Resolved: Jets Pairing and Cuts

- Select hh pair that has the minimal distance to a diagonal line on the 2D mass plane
- m_{4i} dependent requirements on h **pT**, eta, and dR_{ii}
- **Fine** signal efficiency across large mass ranges

HH4b: resolved selection

Boosted: Number of b-tagging

• Three Signal Regions:

HH4b: boosted selection

Arxiv1804.06174

Backgrounds

- Background:
 - 10-15% **ttbar**—MC
 - 90-85% qcd—data driven

- Data driven because heavy flavor MC is hard to simulate
- Generalized ABCD method: Use lower-b-tag, lower-signal yield region to model higher-b-tag regions

Tony Tong

Signal Region: Resolved

• Final discriminant: **m4j**, **four jets's invariant mass**; no significant excess observed

May 8, 2018

Signal Region: Boosted

• Final discriminant: m2j, dijet invariant mass; no significant excess observed

Combined Limits

• No significant excess

- Non-Resonant hh → bbbb cross section limit:
 - 147 fb
 - $\mu = \sigma/\sigma_{SM} \sim 13$ (20.7 expected)

Conclusion

- Two very different searches in exotic Higgs sector • Search for $h \rightarrow Z_d Z_d \rightarrow IIII$ for low and high mass Z_d • Search for $hh \rightarrow bbbb$ for non-resonant and resonant
- So far no significant excess observed, 13 TeV nonresonance di-Higgs limit at **13** times the SM prediction
- Check out and stay tuned for more results!
 - Rare decays: $h \rightarrow aa \rightarrow \gamma \gamma \gamma gg$ and $h \rightarrow \rho \gamma / \Phi \gamma$
 - di-Higgs: other channels with 36 ifb will come soon!

Arxiv1803.11145

Arxiv1712.02758

Back up Slides

Organizers: Brian Batell **Cindy Cercone** Ayres Freitas **Dorival Gonçalves** Tao Han (chair) Ahmed Ismail Adam Leibovich Natália Maia David McKeen Satya Mukhopadhyay

Program Advisors:

Vernon Barger Lisa Everett Kaoru Hagiwara JoAnne Hewett Arthur Kosowsky Yao-Yuan Mao Tilman Plehn Xerxes Tata Andrew Zentner Dieter Zeppenfeld

May 7-9, 2018

Signal region: $\langle m_{\parallel} \rangle = (m_{12} + m_{34})/2$

HXX4I: Results

aa)

upper limit or

10⁻²

10

Limits for Higgs to aa

• The shaded areas are the quarkonia veto regions.

• Need more data!

Tony Tong

Di-Higgs decay

Motivation

Di-Higgs decay

larger branching ratio—higher yield

Motivation

Summary of HH ATLAS Results

ATLAS Search Results	8TeV, fb-1	13TeV, fb-1	HL-LHC
bbbb	<u>20</u>	<u>3 / 13 / 36</u>	prospect
bbττ	20		<u>prospect</u>
bbyy	<u>20</u>	3	<u>prospect</u>
WW*yy	20	<u>13</u>	
Combination	<u>20</u>		

V

NO ED ILSI TUTUTUN

HH ATLAS Results

Control Region: Resolved

 Good agreement in shape and normalization Data 2015 Obs 969 Exp 956 ± 50 Events / 100 GeV 10` ATLAS Data **Multijet** $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 10[°] Hadronic tt Resolved Control Region, 2015 Semi-leptonic tt 10 Scalar (280 GeV) ••••• SM HH ×100 2015 10' G_{кк} (800 GeV, k/M_{Pl}=1) 10² — – G_{KK} (1200 GeV, k/M_{Pl}=2) Stat. Uncertainty 10 10 Data / Bkgd 1 0.5 200 400 600 1000 1200 1400 800 m_{HH} [GeV] Tony Tong (Harvard) Nº EU ES Marino

Runll 4b

2016 7656

7550 ± 130

Control Region: Boosted

• **Good** agreement in shape and normalization

Local p

di-Higgs p-values

- The smallest p is found for the narrow-width scalar at 280 GeV and corresponds to 3.6 (2.3 global) standard deviations from the background-only hypothesis.
- The p. value for the G_K model with k/M = 1 at the same mass is 2.5 standard deviations, the G_{K} model with k/M=2 is too wide to fit the excess.

(Harvard)

Tony Tong

Future Perspectives

Extrapolation of current 2016 results

• Limit: $-3.5 < \lambda_{hhh} <$

[fb]

(Harvard)

ATLAS-CONF-2016-024

Combined Limit

Run I non-res limit comparison

Runl non-res limits rel to SM

bbττ

WW*yy

bbyy

bbbb

Combination

HHATLAS Results

Phys. Rev. D 92, 092004 (2015)

Obs(Exp)

160 (**130**)

1150 (680)

220 **(100**)

63 **(63**)

70 (48)

Resolved and Boosted Results

·	Sample	Signal Region Yield
	Multijet	81.4 ± 4.9
		5.2 ± 2.6
	Z+jets	0.4 ± 0.2
	Total	87.0 ± 5.6
	Data	87
	${ m SM} \ hh$	0.34 ± 0.05
	$G_{\rm KK}^* \ (500 GeV), \ k/\bar{M}_{\rm Pl} = 1$	27 ± 5.9
Events / 20 GeV	18 16 14 14 12 10 8 6 4 2 14 10 10 10 10 10 10 10 10	Signal Region • Data Multijet tī Syst+Stat Uncertainty G*(700), $k/\overline{M}_{PI} = 1.0$ G*(1000), $k/\overline{M}_{PI} = 1.0, \times 3$
a / Bkgd		
Dat	0 • • • • • • • • • • • • • • • • • • •	000 1200 1400 1600 m _{4j} [GeV]
Tony	Tong (Harvard)	

NO ED ILSI TUTUTUN

30

Run I 4b

Eur. Phys. J. C (2015) 75:412

	Sample	9				Signal Re	gion Y	Tield
	Multije $t\bar{t}$ $Z+jets$	et S	Bo	oste	d	23.5 2.2 = 0.14 =	± 4.1 ± 0.9 ± 0.06	
	Total					25.7	± 4.2	
	Data					3	4	
	G_{KK}^{*} (1000	GeV), k	$/\bar{M}_{\rm Pl} =$: 1	2.1 =	± 0.6	
			ATL $\sqrt{S} =$ $\int Ldt =$	AS 8 TeV 19.5 fb	Signal	Region Data Multijet tī Syst+Stat U G*(1000), k/ī G*(1500), k/ī	ncertaint M _{Pl} = 1.0, M _{Pl} = 1.0,	y × 2 × 15
а / ъкда		╷ ╵ ╵ ┿ <u></u>						
La	600	800	1000	1200	1400	1600	1800 m _{2J}	2000 [GeV]

