Prospects of Exotic Higgs Decays in 2HDM at 100 TeV Collider

Huayang Song

Collaborators: Felix Kling, Honglei Li, Adarsh Pyarelal, Shufang Su

University of Arizona

 $17^{\rm th}$ April 2018

2HDM:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \phi_1^0 + ia_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \phi_2^0 + ia_2) \end{pmatrix}$$

2HDM:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \phi_1^0 + ia_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \phi_2^0 + ia_2) \end{pmatrix}$$

Mass Eigenstates

$$h = -\sin\alpha \,\phi_1^0 + \cos\alpha \,\phi_2^0$$
$$H = \cos\alpha \,\phi_1^0 + \sin\alpha \,\phi_2^0$$

CP-even Higgses

Huayang Song (UA)

Exotic Higgs Decays at 100 TeV

17th April 2018 2 / 10

2HDM:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \phi_1^0 + ia_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \phi_2^0 + ia_2) \end{pmatrix}$$

Mass Eigenstates

$$h = -\sin \alpha \phi_1^0 + \cos \alpha \phi_2^0$$
$$H = \cos \alpha \phi_1^0 + \sin \alpha \phi_2^0$$
$$A = -\sin \beta a_1^0 + \cos \beta a_2^0$$

CP-even Higgses

CP-odd Higgs

2HDM:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \phi_1^0 + ia_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \phi_2^0 + ia_2) \end{pmatrix}$$

Mass Eigenstates

$h = -\sin\alpha\phi_1^0 + \cos\alpha\phi_2^0$	J
$H = \cos \alpha \phi_1^0 + \sin \alpha \phi_2^0$	Ĵ
$A = -\sin\beta a_1^0 + \cos\beta a_2^0$	
$H^{\pm} = -\sin\beta\phi_1^{\pm} + \cos\beta\phi_1$	b_{2}^{\pm}

CP-even Higgses

CP-odd Higgs Charged Higgs

2HDM:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \phi_1^0 + ia_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \phi_2^0 + ia_2) \end{pmatrix}$$

Mass Eigenstates

$$\begin{split} h &= -\sin\alpha\,\phi_1^0 + \cos\alpha\,\phi_2^0 \\ H &= \cos\alpha\,\phi_1^0 + \sin\alpha\,\phi_2^0 \\ A &= -\sin\beta\,a_1^0 + \cos\beta\,a_2^0 \\ H^{\pm} &= -\sin\beta\,\phi_1^{\pm} + \cos\beta\,\phi_2^{\pm} \end{split}$$

CP-even Higgses

CP-odd Higgs Charged Higgs

Parameters

Higgs Boson Masses Mixing Angles Soft Z_2 breaking mass term $m_h, m_H, m_A, m_{H^{\pm}}$ $\tan \beta = v_1/v_2, \cos(\beta - \alpha) \simeq 0$ m_{12}^2

Huayang Song (UA)

Exotic Higgs Decays at 100 TeV

17th April 2018 2 / 10

2HDM:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \phi_1^0 + ia_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \phi_2^0 + ia_2) \end{pmatrix}$$

Mass Eigenstates

$$\left. \begin{array}{l} h = -\sin\alpha\,\phi_1^0 + \cos\alpha\,\phi_2^0 \\ H = \cos\alpha\,\phi_1^0 + \sin\alpha\,\phi_2^0 \\ A = -\sin\beta\,a_1^0 + \cos\beta\,a_2^0 \\ H^{\pm} = -\sin\beta\,\phi_1^{\pm} + \cos\beta\,\phi_2^{\pm} \end{array} \right\}$$

CP-even Higgses

CP-odd Higgs Charged Higgs

Type II 2HDM

- $-\Phi_1$ couples to up-type quarks
- Φ_2 couples to down-type quarks and leptons

Exotic Higgs Decays at 100 TeV

17th April 2018 2 / 10

Conventional Searches

Neutral Higgs: $A/H \rightarrow bb, \tau\tau, WW, ZZ, \gamma\gamma$

Charged Higgs: $H^{\pm} \rightarrow \tau \nu_{\tau}, cs, tb$

Huayang Song (UA)

Exotic Higgs Decays at 100 TeV

17th April 2018 3 / 10

Conventional Searches	Exotic Decay Searches
Neutral Higgs: $A/H \rightarrow bb, \tau\tau, WW, ZZ, \gamma\gamma$	Neutral Higgs: $A/H \rightarrow HZ/AZ$ (CMS/ATLAS) $H \rightarrow hh$ (CMS/ATLAS) $A/H \rightarrow H^{\pm}W$ $H \rightarrow H^{+}H^{-}/AA$
Charged Higgs: $H^{\pm} \rightarrow \tau \nu_{\tau}, cs, tb$	Charged Higgs: $H^{\pm} \rightarrow AW/HW$

Exotic Higgs Decays at 100 TeV

Gluon Fusion (gg \rightarrow A \rightarrow HZ)

Huayang Song (UA)

Bottom-quark Annihilation (bb \rightarrow A \rightarrow HZ)

Huayang Song (UA)

Exotic Higgs Decays at 100 TeV

17th April 2018

4 / 10

Bottom-quark Annihilation (bb \rightarrow A \rightarrow HZ)

 $(H^{\pm} \rightarrow (t \rightarrow bjj)b)(W \rightarrow l\nu)$:

$(H^\pm{\rightarrow}(t{\rightarrow}bjj)b)(W{\rightarrow}l\nu){:}$

dominating background: semi-leptonic top pairs $((t \rightarrow bjj)(t \rightarrow b((w \rightarrow lv))))$

$(H^{\pm} \rightarrow (t \rightarrow bjj)b)(W \rightarrow l\nu)$: dominating background: semi-leptonic top pairs $((t \rightarrow bjj)(t \rightarrow b((w \rightarrow lv))))$ 50 20 $m_{H^{\pm}} = m_{H} = m_{A} - 200 \text{GeV}$ 10 tan eta5 2 800 1000 1200 1400 1600 1800 *m*₄[GeV]

Huayang Song (UA)

Exotic Higgs Decays at 100 TeV

Charged Higgs Channel: $\mathrm{H}^{\pm}{\rightarrow}\mathrm{HW}$

top-associated production (pp $ightarrow tbH^{\pm}$)

top-associated production $(pp{\rightarrow}tbH^{\pm})$

We consider the following decay chain: $(t \rightarrow bW)b(H^{\pm} \rightarrow (H \rightarrow \tau\tau)W)$

And for the two W bosons, we require one decay leptonically and the other decay hadronically.

top-associated production (pp $ightarrow tbH^{\pm}$)

We consider the following decay chain: $(t{\rightarrow}bW)b(H^{\pm}{\rightarrow}(H{\rightarrow}\tau\tau)W)$

And for the two W bosons, we require one decay leptonically and the other decay hadronically.

dominating background: $tt\tau\tau$

top-associated production (pp $ightarrow tbH^{\pm}$)

We consider the following decay chain: $(t{\rightarrow}bW)b(H^{\pm}{\rightarrow}(H{\rightarrow}\tau\tau)W)$

And for the two W bosons, we require one decay leptonically and the other decay hadronically.

dominating background: $tt\tau\tau$

Exotic Higgs Decays at 100 TeV

• SM-like Higgs boson (125 GeV)

• SM-like Higgs boson (125 GeV) \rightarrow alignment limit $\cos_{\beta-\alpha} \simeq 0$

- SM-like Higgs boson (125 GeV) \rightarrow alignment limit $\cos_{\beta-\alpha} \simeq 0$
- Electroweak precision measurements

- SM-like Higgs boson (125 GeV) \rightarrow alignment limit $\cos_{\beta-\alpha} \simeq 0$
- Electroweak precision measurements $\rightarrow m_{H^{\pm}} \approx m_{H/A}$

- SM-like Higgs boson (125 GeV) \rightarrow alignment limit $\cos_{\beta-\alpha} \simeq 0$
- Electroweak precision measurements $\rightarrow m_{H^{\pm}} \approx m_{H/A}$
- Vacuum stability
- Perturbativity and unitarity $(|\lambda_i| < 4\pi)$

- SM-like Higgs boson (125 GeV) \rightarrow alignment limit $\cos_{\beta-\alpha} \simeq 0$
- Electroweak precision measurements $\rightarrow m_{H^{\pm}} \approx m_{H/A}$
- Vacuum stability Perturbativity and unitarity $(|\lambda_i| < 4\pi)$ $\Big\} \rightarrow m_{12}^2 \simeq m_H^2 s_\beta c_\beta$
- Flavor constraints and LHC and LEP Constraints

- SM-like Higgs boson (125 GeV) \rightarrow alignment limit $\cos_{\beta-\alpha} \simeq 0$
- Electroweak precision measurements $\rightarrow m_{H^{\pm}} \approx m_{H/A}$
- Perturbativity and unitarity $(|\lambda_i| < 4\pi)$ $\Big\} \rightarrow m_{12}^2 \simeq m_H^2 s_\beta c_\beta$
- Flavor constraints and LHC and LEP Constraints

Huayang Song (UA)

Benchmark Plane for Hierarchical 2HDM

• BP-IA $m_A > m_H = m_{H^{\pm}}$

- $A \rightarrow HZ$ (Golden Channel)

Production: gluon fusion (gg \rightarrow A) and bottom-quark annihilation (bb \rightarrow A) Final state: bb(H)ll(Z), $\tau\tau$ (H)ll(Z) and tt(H)ll(Z)

- $A \rightarrow H^{\pm}W$

Final state: $tb(H^{\pm})l\nu(W)$

Benchmark Plane for Hierarchical 2HDM

• BP-IA $m_A > m_H = m_{H^{\pm}}$

- $A \rightarrow HZ$ (Golden Channel)

Production: gluon fusion (gg \rightarrow A) and bottom-quark annihilation (bb \rightarrow A) Final state: bb(H)ll(Z), $\tau\tau$ (H)ll(Z) and tt(H)ll(Z)

- $A \rightarrow H^{\pm}W$

Final state: $tb(H^{\pm})l\nu(W)$

• BP-IIB $m_A = m_{H^{\pm}} > m_H$

- $A \rightarrow HZ$ (Golden Channel)
- $H^{\pm} \rightarrow HW$

 $\begin{array}{l} \mbox{Production: top-associated production } (gg \rightarrow tbH^{\pm}) \\ \mbox{Final state: } \tau\tau(H)bbjjl\nu \mbox{ and } tt(H)bbjjl\nu \end{array}$

Conslusion of Our Preliminary Results

Backup

Huayang Song (UA)

Exotic Higgs Decays at $100~{\rm TeV}$

17th April 2018 10 / 10

Backup

Huayang Song (UA)

Exotic Higgs Decays at 100 TeV

17th April 2018 10 / 10