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Massive Neutrinos

Massive neutrinos and New Physics

Observation of ν oscillations
ñ at least 2 ν are massive

BSM necessary for ν mass
- Radiative models
- Extra-dimensions
- R-parity violation in supersymmetry
- Seesaw mechanisms

3 minimal tree-level seesaw models ñ 3 types of heavy fields
- type I: right-handed neutrinos, SM gauge singlets
- type II: scalar triplets
- type III: fermionic triplets
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All give rise to light Majorana neutrinos
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LNV in low-scale seesaw models

Towards testable Type I variants
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Taking MR " mD gives the “vanilla” type 1 seesaw

mν “ ´mDM´1
R mT

D

mν „ 0.1 eV ñ
ˇ

ˇ

ˇ

ˇ

Yν „ 1 and MR „ 1014 GeV
Yν „ 10´6 and MR „ 102 GeV

mν suppressed by small active-sterile mixing mD{MR

Cancellation in matrix product to get large mD{MR

Lepton number, e.g. low-scale type I [Ilakovac and Pilaftsis, 1995] and others

Lepton number inverse seesaw [Mohapatra and Valle, 1986, Bernabéu et al., 1987]

Lepton number linear seesaw [Akhmedov et al., 1996, Barr, 2004, Malinsky et al., 2005]

Flavour symmetry, e.g. A4 ˆ Z2 [Chao et al., 2010]

Flavour symmetry, e.g. A4 or Σp81q [Chattopadhyay and Patel, 2017]

Flavour symmetry, e.g. Zp3q [Gu et al., 2009]

Gauge symmetry, e.g. Up1qB´L [Pati and Salam, 1974] and others

mν “ 0 equivalent to conserved L for models with 3 νR

or less of equal mass [Kersten and Smirnov, 2007]
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LNV in low-scale seesaw models

Extending the Kersten-Smirnov theorem

Can the result of Kersten and Smirnov be generalized ?
Are lepton number violating processes suppressed in all low-scale seesaw
models ?

Theorem

If: - no cancellation between different orders of the seesaw expansiona

If: - no cancellations between different radiative ordersb

Then mν “ 0 equivalent to having the neutrino mass matrix, in the basis
pνC

L , tν
p1q
R,1 ...ν

p1q
R,nu, tν

p2q
R,1 ...ν

p2q
R,nu, tν

p3q
R,1 ...ν

p3q
R,muq

M̃ “

¨

˚

˚

˝

0 α ˘iα 0
αT M1 0 0
˘iαT 0 M1 0

0 0 0 M2

˛

‹

‹

‚

, (1)

for an arbitrary number of νR and to all radiative orders, with M1 and M2 diagonal matri-
ces with positive entries and α a generic complex matrix.

aThis is a necessary requirement to satisfy phenomenological constraints
bThese are highly fine-tuned solution that cannot be achieved solely by specific

textures of the neutrino mass matrix
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LNV in low-scale seesaw models

Corollary on lepton number violation
Using a unitary matrix D, let us construct

Q “

¨

˚

˚

˝

1 0 0 0
0 ˘ i?

2
D 1?

2
D 0

0 1?
2
D ˘ i?

2
D 0

0 0 0 1

˛

‹

‹

‚

then through a change of basis

QT M̃Q “

¨

˚

˚

˝

0 ˘i
?

2pDTαT
q

T 0 0
˘i
?

2DTαT 0 ˘iDT M1D 0
0 ˘iDT M1D 0 0
0 0 0 M2

˛

‹

‹

‚

„

¨

˚

˚

˝

0 MT
D 0 0

MD 0 MR 0
0 MT

R 0 0
0 0 0 M2

˛

‹

‹

‚

Similar to the L conserving limit of inverse and/or linear seesaw
Explicitly L conserving taking the L assignment p`1,´1,`1, 0q

Corollary

The most general gauge-singlet neutrino extensions of the SM with no cancellation
between different orders of the seesaw expansion, no fine-tuned cancellations between
different radiative orders and which lead to three massless neutrinos are L conserving.
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LNV in low-scale seesaw models

Eq. (1) as a sufficient condition

Directly obtained from the corollary1

1In the seesaw limit, light neutrinos are Majorana fermions whose mass violate L
conservation. Eq. (1) being equivalent to L conservation implies that the light neutrinos
are massless.
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LNV in low-scale seesaw models

Necessary condition: tree level

At tree-level and for the first order of the seesaw expansion

mν « ´mDM´1
R mT

D

If mDM´1
R mT

D “ 0 and using Z “ M´1
R mT

D, then the exact block-
diagonalisation of the full neutrino mass matrix gives
[Korner et al., 1993, Grimus and Lavoura, 2000]

mν “´
`

1` Z˚ZT˘´
1
2 ZTmT

D

`

1` Z:Z
˘´ 1

2

´
`

1` ZTZ˚
˘´ 1

2 mDZ
`

1` ZZ:
˘´ 1

2

`
`

1` Z˚ZT˘´
1
2 ZTMRZ

`

1` ZZ:
˘´ 1

2

All terms contain mDM´1
R mT

D thus

mν “ 0 ñ mDM´1
R mT

D “ 0

to all orders of the seesaw expansion
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LNV in low-scale seesaw models

Necessary condition: one-loop level

When mν “ 0 at tree-level, the one-loop induced masses are

δmij “ <
„

αW

16π2m2
W

CikCjk f pmkq



with C the mixing matrix in the neutral current and Higgs couplings and f
the loop function

In the basis where MR is diagonal, the full neutrino mass matrix M is

M “

¨

˚

˚

˚

˝

0 mD1 . . . mDn

mT
D1 µ1 . . . 0
...

...
. . . 0

mT
Dn 0 . . . µn

˛

‹

‹

‹

‚

and at the first order in the seesaw expansion

δm “ 0 ñ
n
ÿ

i“1

µ´2
i mDimT

Di f pµiq “ 0
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LNV in low-scale seesaw models

Necessary condition: one-loop level

Cancellation could still come from summation of non-zero terms /

But a rescaling M Ñ ΛM does not affect the condition mν “ δm “ 0

f pxq being monotonically increasing and strictly convex,

n
ÿ

i“1

µ´2
i mDimT

Di f pµiq “ 0 Ñ Λ´2
n
ÿ

i“1

µ´2
i mDimT

Di f pΛµiq “ 0

generate linearly independent equations from which

mν “ 0 ñ mDimT
Di “ 0

since µi ą 0, f pµiq ą 0
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LNV in low-scale seesaw models

Necessary condition: one-loop level

From a bit of algebra and by excluding trivial solutions,
aa
mDimT

Di “ 0 ñ

mDi “

¨

˝

ui1
1 ˘iui1

1 0 0 0 0 0 . . . 0
vi1

1 ˘ivi1
1 vi2

3 ˘ivi2
3 0 0 0 . . . 0

wi1
1 ˘iwi1

1 wi2
3 ˘iwi2

3 wi3
5 ˘iwi3

5 0 . . . 0

˛

‚

By rearranging the columns and rows, flavour-basis mass matrix
becomes

M “

¨

˚

˚

˝

0 α ˘iα 0
αT M1 0 0
˘iαT 0 M1 0

0 0 0 M2

˛

‹

‹

‚

“ M̃
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Conclusion

Conclusions

Any symmetry that leads to massless light neutrinos contains L as a subgroup or
an accidental symmetry

Spectrum in the L conserving limit: 3 massless light neutrinos + heavy Dirac
neutrinos + decoupled neutrinos

Nearly conserved L is a cornerstone of low-scale type I seesaw variants

Smallness of the light neutrino mass related to the smallness of the L breaking
parameter, or equivalently to the degeneracy of the heavy neutrinos in
pseudo-Dirac pairs in low-scale type I seesaw variants

Expect L violating signatures to be suppressed
Ñ Needs to be quantitatively assessed

Seems to be applicable to type III seesaw variants as well
Ñ Currently investigating it

Cédric Weiland (IPPP Durham) LNC theorem Pheno 2018 11 / 11



Backup

Backup slides
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Backup

Cancellation between different seesaw orders

To second order in the expansion

mp2qν “ ´mp1qν `
1
2

´

mp1qn uθ ` θTmp1qν
¯

with mp1qν the first order expression and θ is Z:Z up to a unitary
transformation

Then
pmp2qν qii “ 0 ô ´m̂p1qlii ` m̂p1qlii θii “ 0

and θii “ 1

This contradicts [Fernandez-Martinez et al., 2016] which gives ||θ|| ď 0.0075
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Backup

An aside on the Kersten-Smirnov theorem

Using tree-level contributions ( mν “ 0 ô mDM´1
R mT

D “ 0 ), they get the
general result if #νR ď 3

mD “ m

¨

˝

y1 y2 y3
ay1 ay2 ay3
by1 by2 by3

˛

‚, and
y2

1

MR,1
“

y2
2

MR,2
“

y2
3

MR,3

For #νR ą 3, the system of linear equations in their proof is
under-constrained

In general, no symmetry is present. Necessary to assume degenerate
heavy neutrinos to make a statement.

Justify this by requiring radiative stability but approach based on running
of the Weinberg operator
Ñ Works only if Higgs boson lighter than all heavy neutrinos
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Backup

Details of one-loop proof I

The loop function is

f pmkq “ mk
`

3m2
ZgkZ ` m2

HgkH
˘

where

gab “
m2

a

m2
a ´ m2

b
log

m2
a

m2
b

which gives

UT
l

`

1` ZTZ˚
˘´1

ZTU˚h fhU:hZ
`

1` Z:Z
˘´1

Ul “ 0

ZTU˚h fhU:hZ “ 0

to the first order in the seesaw expansion

Uh « 1

ZTFhZ “ 0
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Backup

Details of one-loop proof II

We write mT
Di “ pu

i, vi,wi
q, then

mDimT
Di “

¨

˝

uiT ui uiT vi uiT wi

viT ui viT vi viT wi

wiT ui wiT vi wiT wi

˛

‚“ 0

We construct Y i
“ ui˚uiT

` uiui:. Imposing uiT ui
“ 0 and excluding the trivial

solution ui
“ 0, rankpY i

q “ 2

Y i symmetric and real: we can build a basis of real orthogonal eigenvectors bi
1...ni

.
For the zero ni ´ 2 eigenvalues,

Y ibi
k “ 0 ñ ||ui

||
2
puiT bi

kq “ 0 ñ uiT bi
k “ 0

Then

ui1
“ Ri

uui
“

¨

˚

˚

˚

˚

˚

˝

biT
1 ui

biT
2 ui

biT
3 ui

...
biT

ni u
i

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

ui1
1

ui1
2

0
...
0

˛

‹

‹

‹

‹

‹

‹

‚
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Backup

Details of one-loop proof III

Once we have
ui1 “

´

ui1
1 ,˘iui1

1 , 0, . . . , 0
¯T

Under this transformation, we have

uiTvi “ 0 Ñ u1iTv1i “ 0

leading us to conclude that

vi1 “

´

vi1
1 ,˘ivi1

1 , v
i1
3 , v

i1
4 , . . . , v

i1
ni

¯T

Similarly, we construct a second matrix Rv acting on
´

vi1
3 , v

i1
4 , . . . , v

i1
ni

¯T

such that vi1 is reduced to

vi2 “

´

vi1
1 ,˘ivi1

1 , v
i2
3 ,˘ivi2

3 , 0, . . . , 0
¯T

Rinse and repeat for w
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Backup

Fine-tuning

We adopt here the idea of [Lopez-Pavon et al., 2015], where the tree-level and
one-loop contributions cancel.
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Evolution of m3 as a function of the rescaling parameter Λ. Input masses and
couplings where chosen to give mν “ mtree ` m1-loop “ 0.046 eV at Λ “ 1.
A deviation of less then 10´7 here, is enough to spoil the cancellation
and contradict experimental limits.
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Backup
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