

DEPARTMENT OF PHYSICS

Hybrid seesaw leptogenesis and TeV singlets (I)

Peizhi Du University of Maryland

based on the work with Kaustubh Agashe, Majid Ekhterachian, Chee Sheng Fong, Sungwoo Hong, Luca Vecchi [arXiv:1804.06847]

<u>Outline</u>

- Standard Type I seesaw and leptogenesis
- Leptogenesis in inverse seesaw
- The hybrid seesaw
- Leptogenesis in hybrid seesaw (see part II)
- Conclusion

Problems in SM

The SM is a good effective model and enjoys a great success in experimental tests

However, there are still several unsolved problems:

Neutrino mass

• Baryon anti-baryon asymmetry

- Dark matter
- etc.

Neutrino mass and Type I Seesaw Mechanism

[Yanagida,79] [Gell-Mann, Ramond ,Slansky,79] [Mohapatra,Senjanovic,80]

- Unsuppressed Yukawa couplings
- Lepton number is broken at high scale M_N

Leptogenesis in Type I seesaw

[Fukugita, Yanagida,86]

Asymmetry is generated in leptons and then transferred to baryon asymmetry through sphaleron process.

$yNH\ell + M_NNN$

Sakharov three conditions:

- baryon (lepton) number violation
- C and CP violation
- Interactions out of equilibrium

- Majorana mass M_N violates lepton number
- CP phase in \mathcal{Y}
- N decay out of equilibrium

<u>CP asymmetry</u>

[For a review:Davidson, Nardi,Nir,08]

• CP asymmetry in decay

$$\epsilon = \frac{|\Gamma(N \to \ell H) - \Gamma(N \to \overline{\ell} H^*)|}{\Gamma(N \to \ell H) + \Gamma(N \to \overline{\ell} H^*)}$$

• Need interference between tree and loop diagrams

Baryon asymmetry

Sphaleron process:

$$Y_{\Delta B} \simeq \frac{28}{79} Y_{\Delta L}$$

$$Y_X = \frac{n_X}{s}$$
$$Y_{\Delta X} = \frac{n_X - n_{\bar{X}}}{s}$$

Baryon asymmetry:

*Π*___

• Only depend on mass, assuming no hierarchies in
$$M_N$$
 and \mathcal{Y}

• To get $Y_{\Delta B}^{\rm obs} \approx 10^{-10}$ Need $M_N \sim 10^{11} {\rm GeV}$

close to the seesaw scale!

Pros and cons of high scale Type I seesaw

Pros:

- A minimal solution to SM neutrino mass
- A viable model for leptogenesis

Cons:

- Impossible to probe such heavy singlet neutrinos
- How to generate the seesaw scale? $M_N \sim 10^{12} \text{GeV} \ll M_{\text{pl}}$

Inverse seesaw

[Mohapatra, 86] [Mohapatra,Valle, 86]

$$y\Psi^{c}H\ell + m_{\Psi}\Psi\Psi^{c} + \frac{1}{2}\mu\Psi\Psi$$

 Ψ, Ψ^c Pseudo-Dirac

$$m_{\nu} \sim \frac{y^2 v^2}{m_{\Psi}^2} \mu$$

 $y \sim 0.1$ $m_{\Psi} \sim 1 \text{TeV}$ $\mu \sim 1 \text{keV}$

Inverse seesaw

[Mohapatra, 86] [Mohapatra,Valle, 86]

 μ

$$y\Psi^{c}H\ell + m_{\Psi}\Psi\Psi^{c} + \frac{1}{2}\mu\Psi\Psi$$

$$\Psi, \Psi^{c} \text{ Pseudo-Dirac}$$

$$\frac{y^{2}v^{2}}{m_{\Psi}^{2}}\mu$$

$$m_{\nu} \sim \frac{y^{2}v^{2}}{m_{\Psi}^{2}}\mu$$

$$y \sim 0.1 \quad m_{\Psi} \sim 1\text{TeV} \quad \mu \sim 1\text{keV}$$

- <u>TeV scale</u> singlet neutrinos with <u>unsuppressed</u> couplings can be probed at colliders
- Why μ is much smaller than TeV scale?

Washout in inverse seesaw

[Blanchet, Hambye, Josse-Michaux, 11]

$$K^{\text{eff}} = \frac{\Gamma}{H(m_{\Psi})} \left(\frac{\mu}{\Gamma}\right)^2$$

- Vanish as $\mu \to 0$
- Suppressed compared to original K

Baryon asymmetry in inverse seesaw

 $K^{\text{eff}} = \frac{\Gamma}{H(m_{\Psi})} \left(\frac{\mu}{\Gamma}\right)^2$

CP asymmetry
$$\epsilon_1 + \epsilon_2 \sim \frac{\mu}{m_{\Psi}} \frac{\mu}{\Gamma}$$

Washout

$$\epsilon \sim \frac{\Gamma}{M_N}$$
$$K = \frac{\Gamma}{H(M_N)}$$
$$Y_{\Delta B} \sim 10^{-3} \sqrt{g_*} \frac{M_N}{M_{\rm pl}}$$

high scale Type I seesaw

Baryon asymmetry $Y_{\Delta B} \sim 10^{-3} \frac{\epsilon}{K}$ (strong washout)

$$Y_{\Delta B} \sim 10^{-3} \sqrt{g_*} \frac{m_{\Psi}}{M_{\rm pl}} \sim 10^{-18} \frac{m_{\Psi}}{1 \,{\rm TeV}}$$

[Agashe, PD, Ekhterachian, Fong, Hong, Vecchi, 18]

- The same as high scale Type I seesaw
- Too small for TeV singlets

Pros and cons for inverse seesaw

Pros:

- TeV scale singlets generate neutrino mass
- Interesting signals at colliders

Cons:

• In tension with leptogenesis

$$Y_{\Delta B} \sim 10^{-3} \sqrt{g_*} \frac{m_{\Psi}}{M_{\rm pl}} \sim 10^{-18} \frac{m_{\Psi}}{1 {\rm TeV}}$$

• Why $\,\mu\,({\rm keV})$ is so small compared to $m_{\Psi}\,({\rm TeV})?$

Add a high scale Type I seesaw for μ !

Hybrid seesaw

[Agashe, PD, Ekhterachian, Fong, Hong, Vecchi, 18]

1

$$y\Psi^{c}H\ell + \kappa\Psi^{c}\Phi_{\kappa}\Psi + \lambda N\Phi_{\lambda}\Psi + \frac{1}{2}M_{N}NN$$
$$y, \kappa, \lambda \gtrsim 0.01 \qquad \langle \Phi_{\kappa} \rangle, \langle \Phi_{\lambda} \rangle \sim \text{TeV} \qquad M_{N} \gg \text{TeV}$$

$$\begin{array}{ll} \underbrace{Hybrid\ seesaw}_{[Agashe, PD, Ekhterachian, Fong, Hong, Vecchi, 18]} \\ y\Psi^{c}H\ell + \kappa\Psi^{c}\Phi_{\kappa}\Psi + \lambda N\Phi_{\lambda}\Psi + \frac{1}{2}M_{N}NN \\ y, \kappa, \lambda \gtrsim 0.01 \qquad \langle \Phi_{\kappa} \rangle, \langle \Phi_{\lambda} \rangle \sim \text{TeV} \qquad M_{N} \gg \text{TeV} \end{array}$$

Below M_N $y\ell H\Psi^c + \kappa\Psi^c\Phi_\kappa\Psi + \frac{\lambda^2}{M_N}\Phi_\lambda\Psi\Phi_\lambda\Psi$

After $\Phi_{\kappa} \Phi_{\lambda}$ gets VEV

$$y\Psi^{c}H\ell + m_{\Psi}\Psi\Psi^{c} + \frac{1}{2}\mu\Psi\Psi$$
$$m_{\Psi} = \kappa\langle\Phi_{\kappa}\rangle \qquad \mu = \frac{\lambda^{2}\langle\Phi_{\lambda}\rangle^{2}}{M_{N}}$$

$$\begin{array}{ll} \underbrace{Hybrid\ seesaw}_{\mbox{[Agashe,PD,Ekhterachian,Fong,Hong,Vecchi,18]}} \\ y\Psi^{c}H\ell + \kappa\Psi^{c}\Phi_{\kappa}\Psi + \lambda N\Phi_{\lambda}\Psi + \frac{1}{2}M_{N}NN \\ y,\kappa,\lambda \gtrsim 0.01 \qquad \langle \Phi_{\kappa} \rangle, \langle \Phi_{\lambda} \rangle \sim \text{TeV} \qquad M_{N} \gg \text{TeV} \end{array}$$

Below M_N $y\ell H\Psi^c + \kappa\Psi^c\Phi_\kappa\Psi + \frac{\lambda^2}{M_N}\Phi_\lambda\Psi\Phi_\lambda\Psi$

After
$$\Phi_{\kappa} \Phi_{\lambda}$$
 gets VEV
 $y \Psi^{c} H \ell + m_{\Psi} \Psi \Psi^{c} + \frac{1}{2} \mu \Psi \Psi$
 $m_{\Psi} = \kappa \langle \Phi_{\kappa} \rangle \qquad \mu = \frac{\lambda^{2} \langle \Phi_{\lambda} \rangle^{2}}{M_{N}}$

- All couplings are largish and no new scales below EW scale
- μ is generated by a high scale seesaw
- Neutrino mass is generated via TeV scale inverse seesaw

<u>Conclusions</u>

- Leptogenesis in the standard TeV scale inverse seesaw follows a simple formula, which tends to produce too small baryon asymmetry
- We study a hybrid seesaw of high scale Type I seesaw and TeV scale inverse seesaw.
- Hybrid seesaw naturally generating a tiny μ term via a high scale seesaw
- Hybrid seesaw could achieve successful leptogenesis due to interplay of high scale and TeV scale physics (details are in the next talk).

Thank you!

$$y\Psi^{c}H\ell + \kappa\Psi^{c}\Phi_{\kappa}\Psi + \lambda N\Phi_{\lambda}\Psi + \frac{1}{2}M_{N}NN$$

Toy model for composite seesaw

- Composite/elementary set up forbids other couplings like $y_N N H \ell$
- $V(\Phi_{\kappa,\lambda},H)$ is generic
- ullet The model has lepton number symmetry in fermions which is broken by M_N

Warped/Composite seesaw

Confinement (TeV)

 $y\Psi^{c}H\ell + m_{\Psi}\Psi\Psi^{c} + \frac{1}{2}\mu\Psi\Psi$ $m_{\psi} \sim \text{TeV}, \mu \sim \frac{\text{TeV}^{2}}{M_{N}^{\text{UV}}} \left(\frac{\text{TeV}}{M_{\text{Pl}}}\right)^{2[\mathcal{O}_{N}]-5} \cdot \mu \sim \frac{\text{TeV}^{2}}{M_{\text{seesaw}}} M_{\text{seesaw}} = M_{N}^{\text{UV}} \left(\frac{\text{TeV}}{M_{\text{Pl}}}\right)^{5-2[\mathcal{O}_{N}]}$

- Lepton number is a global symmetry of strong sector and thus forbids *N* direct coupling to Higgs.
- Rich collider signatures
- It will be very interesting to study leptogenesis in composite sector.

Global/gauge symmetries:

 $y\Psi^{c}H\ell + \kappa\Psi^{c}\Phi_{\kappa}\Psi + \lambda N\Phi_{\lambda}\Psi + \frac{1}{2}M_{N}NN$

- Two U(1) global symmetries forbids other couplings like $y'\Psi H\ell$ which can be embedded in a gauge symmetry
- $V(\Phi_{\kappa,\lambda}, H)$ respects global symmetries