Dark Photons from Captured Dark Matter Annihilation

Jordan Smolinsky

arXiv: 1509.07525, 1602.01465, and 1701.03168 with J.L. Feng and P. Tanedo

Pheno Dark Matter Session III May 8, 2018

Dark Matter with Dark Photons

Hidden broken U(1)' symmetry. Kinetically mixed to the SM Photon. $\alpha_X^{\text{th}} = 0.035 \left(\frac{m_X}{\text{TeV}} \right)$ $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \sum_{\text{SM}} \bar{f} \left(i\partial - q_f eA - m_f\right) f$ $-\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}+\frac{\epsilon}{2}F_{\mu\nu}F'^{\mu\nu}+\frac{m_{A'}^2}{2}A'_{\mu}A'^{\mu}+\bar{X}(i\partial-g_{X}A'-m_{X})X$ $\epsilon \approx 10^{-9} - 10^{-7}$ 100 GeV – 10 TeV

Dark Matter with Dark Photons

Standard model becomes dark "milli-charged."

Dark sector doesn't become charged under QED (Feynman vertices).

Dark matter population is described by

When a body is not in equilibrium, the rate of dark matter annihilation is extremely low.

For WIMPs, the Earth is not in equilibrium, but this is fixed in light mediator models. $Tanh²$ v

$$
\tau = (C_{\rm cap} C_{\rm ann})^{-1/2}
$$
\n
$$
\Gamma_{\rm ann} = \frac{1}{2} C_{\rm cap} \tanh^2\left(\frac{\tau_{\oplus}}{\tau}\right)
$$

Dark Matter Annihilation

$$
C_{\rm ann} = \langle \sigma_{\rm ann} v \rangle \left[\frac{G_N m_X \rho_{\oplus}}{3T_{\oplus}} \right]^{3/2}
$$

Sommerfeld Enhancement

At low temperature we need to consider ladder diagrams, or equivalently solve the SE

Increases the annihilation cross section

$$
\langle \sigma_{\rm ann} v \rangle = (\sigma_{\rm ann} v)_{\rm tree} \langle S_S \rangle \qquad S_0 = \frac{2\pi \, \alpha_X / v}{1 - e^{-2\pi \alpha_X / v}}
$$

Equilibrium Time

 $\tau = (C_{\text{cap}} C_{\text{ann}})^{-1/2}$

Equilibrium Time

 $\tau = (C_{\text{cap}}C_{\text{ann}})^{-1/2}$

For the Sun

Magnetic Field Deflections

For the Sun

These cuts can make a dramatic impact on our region of sensitivity

Pheno May 2018 **Details and Smoling Control** Systems Jordan Smolinsky (UC Irvine) **18** and the system of the s

So what can we do?

So what can we do?

Inelastic Dark Matter

Inelastic Dark Matter

Inelastic Dark Matter

Dark matter capture can be used to search for dark sectors

The Earth is a better capture target than expected

Existing experiments can already do these searches

Sommerfeld Enhancement

$$
S_s = \frac{\pi}{a} \frac{\sinh(2\pi ac)}{\cosh(2\pi ac) - \cos(2\pi \sqrt{c - a^2 c^2})}
$$

$$
a = v/(2\alpha_X)
$$

$$
c = 6\alpha_X m_X/(\pi^2 m_{A'})
$$

Pheno May 2018Feng, Kaplinghat, Yu (1005.4678) Jordan Smolinsky (UC Irvine) 26

Magnetic Field Deflections

The Parker model gives for the azimuthal component of the magnetic field

$$
B_{\phi} = \left(\frac{3.3 \text{ nT}}{\sqrt{2}}\right) \frac{\text{au}}{r}
$$

So the deflection angle once the positron arrives at Earth is

$$
\theta_{\text{bend}}(r_d, E) = 8.9^{\circ} \left(\frac{\text{TeV}}{E}\right) \int_{r_d}^{\text{au}} \frac{B_{\phi}(r') dr'}{\text{au}(3.3 \text{ nT})} = 6.3^{\circ} \left(\frac{\text{TeV}}{E}\right) \ln \frac{\text{au}}{r_d}
$$

Magnetic Field Deflections

AMS-02's positron background is fit by

$$
N_B(E_{\rm cut}, \theta_{\rm cut}) = 0.051 \left(\frac{100 \text{ GeV}}{E_{\rm cut}}\right)^{1.8} \left(\frac{\theta_{\rm cut}}{1^{\circ}}\right)^2 \left(\frac{T}{\text{yr}}\right)
$$

We set our acceptance window to allow one background event. This allows us to place cuts on the decay distance as a function of energy

Inelastic Dark Matter

Weakens direct detection constraints

$$
\sigma_{Xn}^{\text{upper}} \propto \left[\int dE_R \ dt \ F^2(E_R) \left(\frac{\text{erf}(y_{\text{min}}(\Delta) + \eta) - \text{erf}(y_{\text{min}}(\Delta) - \eta)}{\eta} \right) \right]^{-1}
$$

$$
\eta \equiv \frac{u_{\oplus}}{u_0} = \frac{V_{\odot} + V_{\oplus} \cos \gamma \cos(\omega(t - t_0))}{u_0} \qquad y_{\text{min}} \equiv \frac{1}{u_0} \sqrt{\frac{1}{2m_N E_R} \left(\frac{m_N E_R}{\mu_N} + \Delta\right)}
$$