Dynamical Dark Matter from Thermal Freeze-Out

Brooks Thomas

LAFAYETTE COLLEGE

Based on work done in collaboration with:

Keith Dienes, Jacob Fennick, and Jason Kumar [arXiv:1712.09919]

Pheno 2018, May 8th, 2018

Dynamical Dark Matter

[Dienes, BT: 1106.4546]

<u>Dynamical Dark Matter</u> (DDM) is a theoretical framework in which constraints on dark matter can be satisfied <u>without the hyperstability</u> <u>criterion</u> ($\tau_{\gamma} \gtrsim 10^{26}$ s) typically required of traditional DM candidates.

In particular, in DDM scenarios...

- The dark-matter candidate is an **ensemble** consisting of a potentially vast number of constituent particle species.
- The individual abundances of the ensemble constituents are <u>balanced</u> <u>against decay rates</u> across the ensemble such that constraints are satisfied.
- The DM abundance and equation of state also exhibit a <u>non-trivial</u> <u>time-dependence</u> beyond that associated with Hubble expansion.

DDM Cosmology: The Big Picture

DDM Model Building

• The viablity of a DDM ensemble hinges on three fundamental scaling relations which describe how masses, abundances, and decay widths scale in relation to each other across the ensemble:

Abundance $\Omega(m)$ as a function of mass

2 Decay width $\Gamma(m)$ as a function of mass

 \bigcirc Density of states n(m) as a function of mass

Depend on cosmology, couplings to external fields, etc.

Reflects the internal structure of the ensemble itself

One crucial ingredient is an <u>abundance-generation mechanism</u> which can provide an appropriate abundance spectrum $\Omega(m)$.

 Realizations of DDM have typically relied on non-thermal mechanisms for abundance generation (e.g., misalignment production).

$$m_i \ll \mathcal{O}(\text{keV})$$
, highly suppressed couplings

 In this talk, however I will demonstrate that a viable set of scaling relations can also be achieved through <u>thermal freeze-out</u>.

$$\mathcal{O}(\text{keV}) \lesssim m_i \lesssim \mathcal{O}(\text{TeV}), \, \mathcal{O}(1) \text{ couplings}$$

DDM ensembles with masses and couplings in this regime can give rise to variety of <u>distinctive and characteristic experimental signatures</u>:

And at Indirect-Detection Experiments

- In the shape of the differential flux spectra of cosmic-ray particles produced from dark-matter annihilation or decay. Dienes, Kumar, BT [1306.2959]
- In characteristic features in the gamma-ray spectra of dwarf galaxies, the Galactic Center, etc. Boddy, Dienes, Kim, Kumar, Park, BT [1606.07440, 1609.09104]

Thermal Freeze-Out

- As an abundance-generation mechanism for dark matter, <u>thermal</u> <u>freeze-out</u> has a number of phenomenological advantages:
 - Insensitivity to initial conditions
 - •Applicable to particles χ with weak-scale masses and couplings sufficiently large (compared to, say, axions) as to be relevant for collider physics, direct detection, etc.

 Characteristic dependence of the abundance when χ annihilates (e.g., through light mediators or t-channel diagrams) into light fields ψ:

$$\langle \sigma v \rangle \sim \frac{g_\chi^2 g_\psi^2}{m_\chi^2} \qquad \frac{m_\chi^2}{g_\chi^2 g_\psi^2}$$

Thermal DDM?

The Question: Can thermal freezeout naturally provide the balancing of decay widths against abundances required for DDM?

- Typically, Γ_i scales with m_i to some positive power. For a viable ensemble, Ω_i must scale with m_i to a sufficient inverse power.
- Consider an ensemble of dark-matter constituents χ_i which all couple to a **common mediator** ϕ which also couples to a light fields ψ .
- In the regime in which $m_{\phi} > m_i$ for all χ_i , all constituents annihilate primarily to ψ pairs via an s-channel ϕ .

• Scaling of $g(m_i)$ with m_i can depend on underlying theory structure, renormalization, etc. For simplicity we take $g_i \equiv g_{\chi}$ to be <u>universal</u>.

Annihilation Cross-Sections

• The way in which the annihilation cross-section scales with m_i , m_{ϕ} , and m_{ψ} is dictated by the structure of the pertinent Lagrangian operators:

$$\sigma_i \sim \frac{g_{\chi}^2 g_{\psi}^2}{m_i^2} v^{2r-1} \left(\frac{\mu}{m_i}\right)^{2(n_{\chi}+n_{\psi})} \frac{(1-m_{\psi}^2/m_i^2)^{s+1/2}}{(1-m_{\phi}^2/4m_i^2)^2} \left(\frac{m_{\psi}}{m_i}\right)^t$$

Operators (On the Dark-Matter Side)

χ_i	ϕ	coupling	n_{χ}	r
spin-0	spin-0	S: $g_{\chi}\mu\chi^*\chi\phi$	1	0
spin-1/2	spin-0	S: $g_{\chi}\overline{\chi}\chi\phi$	0	1
spin-1/2	spin-0	P: $g_{\chi}\overline{\chi}\gamma_{5}\chi\phi$	0	0
spin-0	spin-1 (time)	V: $g_{\chi}(\chi^*\partial_0\chi)\phi^0$		
spin-0	spin-1 (spatial)	V: $g_{\chi}(\chi^*\partial_i\chi)\phi^i$	0	1
spin-1/2	spin-1 (time)	V: $g_{\chi}\overline{\chi}\gamma_0\chi\phi^0$		
spin-1/2	spin-1 (spatial)	V: $g_{\chi} \overline{\chi} \gamma_i \chi \phi^i$	0	0
spin-1/2	spin-1 (time)	A: $g_{\chi}\overline{\chi}\gamma_0\gamma_5\chi\phi^0$	0	0
spin-1/2	spin-1 (spatial)	A: $g_{\chi}\overline{\chi}\gamma_i\gamma_5\chi\phi^i$	0	1

 n_χ : mass dimension of operator coefficient

r: whether initial state can be L=0 (r=0) or only L=1 (r=1)

Annihilation Cross-Sections

• The way in which the annihilation cross-section scales with m_i , m_{ϕ} , and m_{ψ} is dictated by the structure of the pertinent Lagrangian operators:

$$\sigma_i \sim \frac{g_{\chi}^2 g_{\psi}^2}{m_i^2} v^{2r-1} \left(\frac{\mu}{m_i}\right)^{2(n_{\chi}+n_{\psi})} \frac{(1-m_{\psi}^2/m_i^2)^{s+1/2}}{(1-m_{\phi}^2/4m_i^2)^2} \left(\frac{m_{\psi}}{m_i}\right)^t$$

Operators (On the Light-Particle Side)

ϕ	ψ	coupling	n_{ψ}	s	t
spin-0	spin-0	S: $g_{\psi}\mu\phi\psi^*\psi$	1	0	0
spin-0	spin-1/2	S: $g_{\psi}\phi\overline{\psi}\psi$	0	1	0
spin-0	spin-1/2	P: $g_{\psi}\phi\overline{\psi}\gamma_5\psi$	0	0	0
spin-1 (time)	spin-0	V: $g_{\psi}\phi^{0}(\psi^{*}\partial_{0}\psi)$			
spin-1 (spatial)	spin-0	V: $g_{\psi}\phi^{i}(\psi^{*}\partial_{i}\psi)$	0	1	0
spin-1 (time)	spin-1/2	V: $g_{\psi}\phi^{0}\overline{\psi}\gamma_{0}\psi$			
spin-1 (spatial)	spin-1/2	V: $g_{\psi}\phi^{i}\overline{\psi}\gamma_{i}\psi$	0	0	0
spin-1 (time)	spin-1/2	A: $g_{\psi}\phi^{0}\overline{\psi}\gamma_{0}\gamma_{5}\psi$	0	0	1
spin-1 (spatial)	spin-1/2	A: $g_{\psi}\phi^{i}\overline{\psi}\gamma_{i}\gamma_{5}\psi$	0	1	0

 n_χ : mass dimension of operator coefficient

s: whether final state can be L=0 (s=0) or only L=1 (s=1)

t: whether coupling is chirality-suppressed (t = 1) or not (t = 0)

Abundance Spectrum

• The corresponding spectrum of abundances Ω_i for the ensemble is

$$\Omega_i \sim \frac{m_i^2}{g_\chi^2 g_\psi^2} m_i^{2(n_\chi + n_\psi) + t} \frac{(1 - m_\phi^2 / 4m_i^2)^2}{(1 - m_\psi^2 / m_i^2)^{s + 1/2}}$$

 Equivalently, we can parametrize this spectrum of abundances in terms of an $(m_i$ -dependent) scaling exponent $\gamma(m_i)$:

$$\Omega_i \sim m_i^{\gamma(m_i)}$$

$$\gamma(m_i) \equiv \frac{d \ln \Omega(m_i)}{d \ln m_i} = 2 + \Delta \gamma + \frac{1}{m_i^2 / m_\phi^2 - 1/4} + \frac{2s + 1}{1 - m_i^2 / m_\psi^2}$$

where we have defined $\Delta \gamma \equiv 2(n_{\chi} + n_{\psi}) + t$

Integrating Out Before Freezing Out

- Decay widths typically scale as a positive power of m_i . Thus, DDM prefers $\gamma < 0$.
- This naturally occurs in the regime in which

 $m_{\psi} \ll m_i \ll m_{\phi}$

Standard WIMP

Heavy Mediator

Abundance Spectrum

• Spectrum of Ω_i shown here for

 ϕ : scalar

 χ_i : fermion (S coupling)

 ψ : fermion (A coupling)

Corresponds to the parameters:

$$n_{\chi} = n_{\psi} = t = r = 0 \qquad s = 1$$

Scaling Exponent

 Not a strong dependence on s, so curves basically the same for a simple Z' scenario where:

 ϕ : vector

 χ_i : fermion (V coupling)

 ψ : fermion (V coupling)

Abundance Spectra

$$\Delta \gamma = 0$$
 $\Delta \gamma = 2$ $\Delta \gamma = 4$

Balancing Widths Against Abundances

• DDM requires a balancing of decay widths Γ_i against abundances Ω_i .

Abundance (function of Γ): $\Omega(\Gamma) \sim \Gamma^{\alpha}$ Density of states (per unit Γ): $n_{\Gamma}(\Gamma) \sim \Gamma^{\beta}$

$$\Omega(\Gamma) \sim \Gamma^{\alpha}$$

Dienes, BT [1106.4546]

• Assuming typical scaling behavior for Γ_i and a typical mass spectrum

$$\Gamma \sim m^y$$

$$m \sim k^{\delta}$$

holds regardless of the value (or sign) of y

...we find that:

$$\frac{1}{y}\left(\gamma+rac{1}{\delta}
ight)\lesssim 0$$
 i.e., $\delta\gtrsim\delta_{\min}\equiv-rac{1}{\gamma}$

$$\delta \gtrsim \delta_{\min} \equiv -\frac{1}{\gamma}$$

The Upshot: Easy to achieve the correct balancing!

For example: fermionic χ_i, ψ ; vector ϕ with $m_{\psi} \ll m_i \ll m_{\phi}$

Regimes of Interest

- For a standard WIMP: $\Omega_\chi \propto \frac{1}{\langle \sigma_\chi v \rangle} \sim \frac{m_\chi^2}{g_\chi^4}$ coupling
- Likewise, for a DDM ensemble: $\Omega_{\rm tot} \propto \sum_i \frac{1}{\langle \sigma_i v \rangle} \sim \sum_i \frac{m_\phi^2}{16g_\chi^2 g_\phi^2 m_i^2}$

$$\sum_{i} \left(\frac{m_{\phi}}{m_{i}}\right)^{2} \lesssim g_{\chi}^{2} g_{\psi}^{2} \left(\frac{2.37 \text{ TeV}}{m_{\phi}}\right)^{2}$$

- $\bullet g_{_{\!\mathit{W}}}$ and $g_{_{\!\mathit{Y}}}$ must remain perturbative.
- $m_i \gtrsim \mathcal{O}(\mathrm{keV})$ for all χ_i (structure formation, etc.)
- Thus, our regime of interest for thermal DDM is one in which the χ_i are <u>light</u>, the couplings are large, the mediator is below the TeV scale, and the annihilation products are primarily <u>dark-sector states</u>.

$$\mathcal{O}(\mathrm{keV}) \lesssim m_i \ll m_\phi \ll \mathcal{O}(\mathrm{TeV})$$

Summary

- In this talk, I have shown the appropriate scaling relations for DDM can arise in scenarios in which the dark-matter abundance is generated via **thermal freeze-out**.
- A <u>broad range of scaling behaviors</u> can be achieved, depending on the masses, spins, *etc*. of the particles involved.
- Straightforward to arrange a balancing between decay widths and abundances.
- A regime of interest emerges in which the ensemble constituents are light, couplings are large, and the mediator is at the TeV-scale a regime ripe with phenomenological possibilities!

