J-Factors for Velocity-Dependent Dark Matter Annihilation

Jason Kumar

University of Hawaii

(PRD 95, 123008 (2017) [1702.00408], 180x.xxxxx)
collaborators

• Kimberly Boddy
• Louie Strigari
• Mei-Yu Wang
effective J-factors and v-dependence

- prompt photon flux from dark matter annihilation can be factorized into two pieces....
- ... a particle physics factor
 - depends on annihilation cross section, annihilation channel, particle mass
- and an astrophysics factor
 - depends on the dark matter density profile of the target
 - encoded in the J-factor
- but if dark matter annihilation is velocity-dependent
 - then velocity-distribution also come into play

- goal is to compute the effective J-factor (J_s) ...
- ... and see impact on gamma-ray searches for dark matter
main features

• Sommerfeld-enhanced annihilation $\rightarrow \sigma_A v \propto 1/v$ (Coulomb limit)
 – relative velocities in dSphs tend to be much smaller than in Milky Way halo
 – can get a larger enhancement to annihilation cross section
 – considerable variation in velocity distribution between dSphs, and for different choices of density profile
 – affects which dwarfs are most important for dark matter search
 – see also 1804.05052 (Patec, Ullio, Valli), 1712.03188 (Bergstrom, et al.)

• p-wave or d-wave annihilation suppresses dSph relative to GC
 – weakens dSph constraints on dark matter explanation GC excess
 – changes morphology of expected GC dark matter signal

• important implications for indirect detection searches
what is the J-factor?

• the photon flux depends on
 – particle physics of the dark matter model
 • independent of target
 – astrophysics of the target
 • mostly independent of dark matter model
 • J-factor is the astrophysics factor
 – larger J = larger flux, regardless of particles physics model
 • but factorization based on an assumption
 – σv independent of v
 • what happens for v-dependent annihilation?

\[
\frac{d\Phi}{dE} = \frac{1}{4\pi} \frac{dN}{dE} \int_{\Delta \Omega} d\omega \int d\ell \\
\int d^3v_1 \frac{f(\vec{r}(\ell, \Omega), \vec{v}_1)}{m_x} \int d^3v_2 \frac{f(\vec{r}(\ell, \Omega), \vec{v}_2)}{m_x} \\
\times \frac{\sigma_A |\vec{v}_1 - \vec{v}_2|}{2} \\
= \langle \sigma_A v \rangle \frac{dN}{8\pi m_x^2 dE} \times J \\
J \equiv \int_{\Delta \Omega} d\omega \int d\ell \left[\rho(\vec{r}(\ell, \Omega)) \right]^2 \\
\rho(\vec{r}) = \int d^3v f(\vec{r}, \vec{v})
\]

$f =$ dark matter velocity distribution
defining J_S

- just need to absorb $S(v)$ into definition of astrophysical factor
- new factor, J_S, encodes astro. info needed to determine $\frac{d\Phi}{dE}$ for velocity-dependent case
- need the DM velocity distribution
 - get it from density distribution, using Eddington formula
- what it amounts to:
 - assume $f(r,v)$ spherically-sym., isotropic
 - then f depends only on $\varepsilon = v^2/2 + \Psi(r)$
 - $\rho(r)$ determines $f(r,v)$

\[
\sigma_A v = (\sigma_A v)_0 \times S(v)
\]

\[
J_S \equiv \int_{\Delta \Omega} d\Omega \int d\ell
\int d^3v_1 f(\vec{r}(\ell,\Omega), \vec{v}_1) \int d^3v_2 f(\vec{r}(\ell,\Omega), \vec{v}_2)
\times S(|\vec{v}_1 - \vec{v}_2|)
\]

\[
\frac{d\Phi}{dE} = \frac{(\sigma_A v)_0 dN}{8\pi m_X^2 dE} \times J_S
\]

$\Psi(r) = \text{gravitational potential}$
determining $f(r,v)$

- **strategy**
 - ansatz for DM density distrib.
 - fixes gravitational potential $\Psi(r)$
 - assume a spherically symmetric effective potential from GC bulge, disk (1211.7063, Pato, Strigari, Trotta, Bertone)
 - now **Eddington formula** determines velocity distribution
 - for GC, we pick some **generalized NFW profiles**
 - for dSph, assume **NFW**, but need to fix **two parameters**
 - fix one by matching **stellar velocity dispersion**, the other with Aquarius V_{max}-r_{max} relation

$$f(\varepsilon) = \frac{1}{\sqrt{8\pi^2}} \int_{\varepsilon}^{0} \frac{d\psi}{\sqrt{\varepsilon - \psi}} \frac{d^2\rho}{d\psi^2}$$

$$\varepsilon \equiv \frac{v^2}{2} + \psi(r) < 0$$

$$\rho(r) = 4\pi \int_0^{\sqrt{-2\psi(r)}} dv \ v^2 f(r, v)$$

$$\Psi_{\text{bulge}} = \frac{G_N M_b}{r + c_0}$$

$$\Psi_{\text{disk}} = -\frac{G_N M_d}{r} \left[1 - \exp(r / b_d)\right]$$

GC parameters fixed to standard values, but NFW slope varied
what do we care about?

• basic comparison → GC excess signal is near dSph exclusion
• DM velocities in dSphs about 10× smaller than in GC
• dSph
 – signal enhanced significantly for Sommerfeld-enhancement
 – different for different dSphs
• Galactic Center
 – p-wave, d-wave will weaken signal from dSph relative to GC
 – morphology
 • v smaller near center due to angular momentum barrier
dSph velocity profiles

\[V_{\text{max}} = \text{max. circ velocity, at radius } r_{\text{max}} \]

colored bands = fit from stellar velocity dispersion
\[\sim V_{\text{max}} \propto r_{\text{max}}^{1/2} \]

gray bands = fit to Aquarius (Martinez, Bullock, Kaplinghat, Strigari, Trotta 0902.4715)
dSph J_S

$\varepsilon_\phi \equiv m_\phi / \alpha_\chi m_\chi$

Resonances

Reticulum II

Coulomb $\propto \alpha_\chi = 10^{-2}$

Non-enhanced

$\Delta \Omega = 2.4 \times 10^{-4}$

$J_S [\text{GeV}^2/\text{cm}^3]$ vs ε_ϕ for different regions.
upshot

• ordering of J_S-factors can change between “ordinary” s-wave limit and Sommerfeld-enhanced Coulomb limit
• affects how we would interpret any gamma-ray excess
• suppose we see an excess in a dwarf
 – ask if an excess is seen in other dwarfs with larger J-factors, where you expect a larger flux
 – if not, would call into question the dark matter interpretation
 – but using J_S-factor may resolve the tension

• applications extend to any new dwarfs which are found
 – potential to find excesses in new dwarfs
 – important part of analysis of dark matter interpretation
Galactic Center J_S

- velocity-suppressed cross sections decrease angular distribution within inner 1°, and at large angle
- increase at $\sim O(10^\circ)$ (~ 10-15% effect)
- not degenerate with changes to the inner slope
- upshot – morphology can constrain velocity-dependence of signal from GC

$\rho_s^{NFW} = 8 \times 10^6 M_\odot / \text{kpc}^3$
$\gamma = 0.6, 1, 1.2$
$r_s^{NFW} = 20 \text{kpc}$

fraction of flux from inner 1° (NFW)
- s-wave $\rightarrow \sim 3.1\%$
- p-/d-wave $\rightarrow \sim 2\%$
- s-wave ($\gamma = 1.2$) $\rightarrow \sim 10\%$
- p-wave ($\gamma = 1.4$) $\rightarrow \sim 14\%$

but steeper profiles suppressed far away
conclusion

• J-factors of astrophysical objects change dramatically if dark matter annihilation is velocity-dependent
• relative importance of dSphs can change
• modifies standard consistency check for dark matter interpretation of an excess

• for GC, morphology of dark matter signal changes
• Reticulum II? new dSphs? Galactic Center excess?
Back-up slides
idea behind Eddington formalism

• velocity distribution \(f(r,v) \) is essentially the phase space density
• assume particles move only under a collective gravitational central potential (not two-body scattering)
• classical path depends only on integrals of motion, \(E \) and \(L \)
• Jean’s Theorem – phase space distribution depends only on integrals of motion --> why?
 – if two phase space points have the same integrals of motion, any particles at one point will be (or once were) at the other
 – phase space density along path is constant (Liouville’s Theorem)
 – so time-averaged phase space density has to be a function on only the integrals of motion
• if velocity distribution is spherically symmetric (depends on \(r \), not \(r \)) and isotropic (depends on \(v \), not \(v \)), then velocity distribution depends only on \(E \), not \(L \)
J-factors - DM only
Ratios
GC parameters

- NFW
 - $\gamma = 0.6, 1, 1.2, 1.4$
 - $b = 1, c = 3$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_s^NFW</td>
<td>$8 \times 10\ M_\odot / \text{kpc}^3$</td>
</tr>
<tr>
<td>r_s^NFW</td>
<td>20 kpc</td>
</tr>
<tr>
<td>M_b</td>
<td>$1.5 \times 10^{10} \ M_\odot$</td>
</tr>
<tr>
<td>c_0</td>
<td>0.6 kpc</td>
</tr>
<tr>
<td>M_d</td>
<td>$7 \times 10^{10} \ M_\odot$</td>
</tr>
<tr>
<td>b_d</td>
<td>4 kpc</td>
</tr>
</tbody>
</table>

\[
\rho^\text{NFW}(r) = \frac{\rho_s^\text{NFW}}{\left(\frac{r}{r_s^\text{NFW}} \right)^\gamma \left(1 + \left(\frac{r}{r_s^\text{NFW}} \right)^b \right)^{\frac{c-\gamma}{b}}} \]
Plummer profile

- fit M and a from stellar data
- $r_h \sim 1.3 \ a = \text{half-light radius}$
- from Eddington formula, stellar velocity dispersion now depends on NFW parameters, ρ_s and r_s
- matching to stellar velocity dispersion to data determines an allowed band for $r_{\text{max}}, V_{\text{max}}$

$$\rho_p(r) = \left(\frac{3M}{4\pi a^3} \right) \left(1 + \frac{r^2}{a^2} \right)^{-\frac{5}{2}}$$
Hulthen potential

\[V_H(r) = -\frac{\alpha_x \left(\pi^2 m_\phi / 6 \right) e^{-(\pi^2 m_\phi / 6)r}}{1 - e^{-(\pi^2 m_\phi / 6)r}} - \alpha_x e^{-m_\phi r} \]

\[S(v) = \frac{\pi}{\varepsilon_v} \frac{\sinh \left(\frac{2\pi \varepsilon_v}{\pi^2 \varepsilon_\phi / 6} \right)}{\cosh \left(\frac{2\pi \varepsilon_v}{\pi^2 \varepsilon_\phi / 6} \right) - \cos \left(2\pi \sqrt{\frac{1}{\pi^2 \varepsilon_\phi / 6} - \frac{\varepsilon_v^2}{(\pi^2 \varepsilon_\phi / 6)^2}} \right)} \]

\[\varepsilon_v \equiv \frac{v}{2\alpha_x} \]

\[\varepsilon_\phi \equiv \frac{m_\phi}{\alpha_x m_x} \]

Cassel, 0903.5307
a general analysis

- say \(\rho(r) = \rho_s \tilde{\rho}(r/r_s) \)
- say we integrate J-factor over essentially **entire** dwarf
- \(J, J_s \)-factors **parametrically** determined by dimen. analysis
 - \(V_{\text{max}} \propto (G_N \rho_s)^{1/2} r_s \) (Virial Thm)
- \(J \propto \rho_s^2 r_s^3 / D^2 \propto V_{\text{max}}^4 / r_{\text{max}} D^2 \)
- \(J_s \propto \rho_s^{3/2} r_s^2 / D^2 \propto V_{\text{max}}^3 / r_{\text{max}} D^2 \)
 - Coulomb limit
- if one point is to upper left of another, \(J-J_s \) ordering changes
- valid in the large angle limit, but instructive even for fixed angle

\[D = \text{distance to dwarf} \]
determining $f(r,v)$

- **strategy**
 - assume NFW profile
 - just need parameters
 - fixes gravitational potential
 - assume Plummer stellar profile
 - find stellar velocity dispersion using Eddington formula and NFW gravitational potential
 - find NFW parameters by matching stellar velocity relation, Aquarius $V_{\text{max}}-r_{\text{max}}$ relation
 - now Eddington formula determines DM velocity distribution

\[
\rho_{\text{NFW}}(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)\left(1 + \frac{r}{r_s}\right)^2}
\]

\[
\psi_{\text{NFW}}(r) = -4\pi G r^3 \rho_s \frac{r_s}{r} \ln\left(1 + \frac{r}{r_s}\right)
\]

\[
f(\varepsilon) = \frac{1}{\sqrt{8\pi^2}} \int_{\varepsilon}^{0} \frac{d\psi}{\sqrt{\varepsilon - \psi}} \frac{d^2\rho}{d\psi^2}
\]

\[
\varepsilon \equiv \frac{v^2}{2} + \psi(r) < 0
\]

\[
\rho(r) = 4\pi \int_{0}^{\sqrt{-2\psi(r)}} dv \ v^2 f(r,v)
\]
Sommerfeld-enhancement

• essential setup
 – dark matter annihilation is a contact interaction
 – but dark matter self-interacts through a long range force
 • mediator mass = m_Φ
 – so have to rescale matrix element by wavefunction at the origin

• actual potential is Yukawa
 – can solve numerically
 – but can solve analytically if we approximate it with a Hulthén potential (within 10%)

• $\langle \sigma_A v \rangle \equiv \langle \sigma_A v \rangle_0 \times S(v)$
• $V(r) = -(\alpha_X / r) \exp(-m_\Phi r)$
• four regimes for Hulthén
• $m_\Phi \gg \alpha_X m_X$: non-enhanced
 – $S = 1$
• $m_\Phi \ll \alpha_X m_X : \text{Coulomb limit}$
 – $S(v) = 2\pi\alpha_X / v$
• $\alpha_X m_X \ll m_\Phi \ll \alpha_X m_X : \text{saturation}$
 – $S(v) = 16 \alpha_X m_X / m_\Phi$
• $m_\Phi = 6\alpha_X m_X/(\pi^2 n^2) \ll \alpha_X m_X : \text{resonance}$
 – $S = 4\alpha_X^2 / v^2 n^2$ (cutoff at small v)
• focus: non-enhanced v. Coulomb
resonances

Coulomb $\propto \alpha_x=10^{-2}$

non-enhanced

$\Delta \Omega=2.4 \times 10^{-4}$

dSph J_S

$\varepsilon_\phi \equiv m_\phi/\alpha_x m_x$

Coulomb $\propto \alpha_x=10^{-2}$

non-enhanced

$\Delta \Omega=2.4 \times 10^{-4}$