Collider & Astrophysical Phenomenology of Massive Spin-2 Mediated WIMP Dark Matter (Preview!)

Dennis Foren Michigan State University May 7th, 2018

Presenting work performed with: R. S. Chivukula K. Mohan D. Sengupta E. H. Simmons

The Standard Model? Dark Matter??

The Universe's Energy Budget SM Content: ∼ 5% ← Good at High E Dark Energy: ∼ 71% ← Vacuum Energy? Dark Matter: ∼ 24% ← ???

DM Guess: Non-baryonic thermally-cold neutral massive particle?

The theory DM density must be less than observed DM density ("relic density/abundance"), which equals¹

$$
(\Omega h^2)_{theory} \leq (\Omega h^2)_{exp} = \left[\frac{\rho_{\rm DM}}{\rho_{critical}}\right]h^2 = 0.11425 \pm 0.00311
$$

What if DM only interacts gravitationally? $| *$

 ${}^{1}P$. A. R. Ade, et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13. 2 2 / 17

Higher-Dimensional Consequences

Massive spin-2 particles naturally emerge when compactifying higher-dimensional gravity to 4-dimensions (such as in Randall-Sundrum models); 4D spectrum depends on model.

Q: Can we make any general statements about the phenomenology of these models by focusing on the lowest massive state?

The Effective Massive Spin-2 Theory... and Dark Matter

We may write the simplified massive Spin-2 Lagrangian,

$$
\mathcal{L}_X = \underbrace{\sqrt{-\det g}}_{\text{usual 4D gravity Lagrangian; expand in }\kappa} \left[\frac{2}{\kappa^2} R(g) + \mathcal{L}_{matter}(g) \right] + \underbrace{m_X^2 \left(X^{\mu\nu} X_{\mu\nu} - X^{\mu}{}_{\mu} X^{\nu}{}_{\nu} \right)}_{\text{spin-2 "Fierz-Pauli" mass term}}
$$

where $g_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa X_{\mu\nu}$, and $X_{\mu\nu} =$ massive spin-2 field.

Suppose we also throw in a dark sector w/ WIMP-like χ ...

$$
\mathcal{L}_{matter} = \mathcal{L}_{SM} + \mathcal{L}_{DM} \quad \Longrightarrow
$$

Spin-2 mediated portal model of DM!

Key Points - The Project in Summary

Model Space: We test viability of this model for...

- We scan a wide range of masses m_x , m_x , and coupling κ and we include second-order interaction vertices.
- DM Nature: $\chi = \overline{\chi}$ and $\chi \neq \overline{\chi}$
- DM Spin: χ = scalar, fermion, and vector

Constraints: ... where viability is measured against...

- Collider Limits (ATLAS & CMS diphoton, dilepton, ...)
- Relic Density (Planck)
- Direct DM Searches (XENON1T)
- Indirect DM Searches (H.E.S.S.-I & II, Fermi-LAT, DAMPE)
- Tree-Level Partial Wave Unitarity (b.c. tower is truncated) $_{5/17}$

Key Points - The Project in Summary

Model Space: We test viability of this model for...

- We scan a wide range of masses m_x , m_x , and coupling κ and we include second-order interaction vertices. $(m_x = 1 \text{ TeV})$
- DM Nature: $\chi = \overline{\chi}$ and $\chi \neq \overline{\chi}$
- DM Spin: χ = scalar, fermion, and vector

Constraints: ... where viability is measured against...

- Collider Limits (ATLAS & CMS diphoton, dilepton, ...)
- **Relic Density** (Planck)
- Direct DM Searches (XENON1T)
- Indirect DM Searches (H.E.S.S.-I & II, Fermi-LAT, DAMPE)
- Tree-Level Partial Wave Unitarity (b.c. tower is truncated) $6/17$

Key Complications

Plenty of room for errors, so to ensure correct & confident results,

Guiding Principle: calculate from scratch, and only then cross-check with community tools

In the process, we've developed programs for...

- 1. Computing analytic functions of helicity amplitudes
- 2. Calculating a model's relic density given the appropriate σ_{ann}

Furthermore, we perform a complete $\mathcal{O}(\kappa^2)$ analysis, including multi-mediator vertices.

Example Diagrams: DM Annhilation

Many models only include $\mathcal{O}(\kappa)$ matter-mediator vertices:

$$
\mathcal{L}_X \supseteq -\frac{\kappa}{2} (T_X^{\mu\nu} + T_{SM}^{\mu\nu}) X_{\mu\nu} \implies \left[\begin{array}{c} \overline{\chi} \\ \chi \end{array} \right] \times \left[\begin{array}{c} (SM)_1 \\ \chi \end{array} \right] \times \left[\begin{array}{c} (SM)_1 \\ \chi \end{array} \right]
$$

Our simplified model includes additional $\mathcal{O}(\kappa^2)$ diagrams, including dark matter annihilation to final-state mediator pairs

Triple Mediator Vertex

So we need the \mathcal{X}^3 vertex, which comes from:

 $\mathcal{L}_X \supseteq \frac{\kappa}{\sigma}$ $\frac{\kappa}{8}X_{\mu\nu}\Bigl\{\eta^{\mu\nu}\Big[-(\partial_{\rho}X)(\partial^{\rho}X)+2(\partial_{\rho}X_{\sigma\tau})(\partial^{\rho}X^{\sigma\tau})\Bigl]-4(\partial^{\mu}X_{\rho\sigma})(\partial^{\nu}X^{\rho\sigma})$ $-\,8(\partial_{\sigma}X^{\nu\rho})(\partial^{\sigma}X_{\rho}^{\,\,\mu}) +4(\partial_{\rho}X^{\mu\nu})(\partial^{\rho}X) +8(\partial^{\mu}X_{\rho\sigma})(\partial^{\rho}X^{\sigma\nu})\Big\}$

These terms result from expanding \mathcal{L}_{EH} , which naively generates \sim 180 terms. Yikes.

3. We developed a diagrammatic method for calculating the $\mathcal{O}(X^3)$ Lagrangian and with it ultimately we derived the X^3 terms by hand!

Triple Mediator Vertex

So we need the \mathcal{X}^3 vertex, which comes from:

 $\mathcal{L}_X \supseteq \frac{\kappa}{\sigma}$ $\frac{\kappa}{8}X_{\mu\nu}\Bigl\{\eta^{\mu\nu}\Big[-(\partial_{\rho}X)(\partial^{\rho}X)+2(\partial_{\rho}X_{\sigma\tau})(\partial^{\rho}X^{\sigma\tau})\Bigl]-4(\partial^{\mu}X_{\rho\sigma})(\partial^{\nu}X^{\rho\sigma})$ $-\,8(\partial_{\sigma}X^{\nu\rho})(\partial^{\sigma}X_{\rho}^{\,\,\mu}) +4(\partial_{\rho}X^{\mu\nu})(\partial^{\rho}X) +8(\partial^{\mu}X_{\rho\sigma})(\partial^{\rho}X^{\sigma\nu})\Big\}$

Example of Relic Density Constraint

Partial Wave Unitarity

$$
i{\cal M}_{\lambda_a\lambda_b;\lambda_c\lambda_d}=\left(\begin{matrix}\overline{q}_{\lambda_b}\\&\\&&\end{matrix}\right)\left(\begin{matrix}Q_{\lambda_c}\\&\\&Q_{\lambda_d}\end{matrix}\right)
$$

This matrix element decomposes into partial wave amplitudes:

$$
\mathcal{M}_{\lambda_a\lambda_b;\lambda_c\lambda_d} \equiv 32\pi^2 \sum_{J=\max\{\lambda_i,\lambda_f\}}^{+\infty} \frac{2J+1}{4\pi} \cdot a_{\lambda_a\lambda_b;\lambda_c\lambda_d}^J(s) \cdot D_{\lambda_a-\lambda_b,\lambda_c-\lambda_d}^{J*}(\theta,\phi)
$$

where $D_{\lambda_i,\lambda_f}^J =$ Wigner D -function. The **optical theorem** implies,

$$
*\left\vert\sqrt{1-\frac{4m_q^2}{s}}\cdot\left\vert\mathfrak{R}[a_{\lambda_a,\lambda_b;\lambda_c,\lambda_d}(s)]\right\vert\leq 1\right\vert\ast
$$

for all amplitudes. We demand satisfaction of this inequality up to some appropriately-chosen scale Λ_{max} .

Example of Unitarity Constraints

Example of Unitarity $+$ Relic Density Constraints

How Apply Unitarity To Relic Density?

The relic density depends on the DM annihilation cross-section:

$$
\sigma_{\text{ann}} = \sum_{\text{SM}} \sigma \left(\begin{array}{c} \overline{X} \\ \overline{X} \end{array} \right) \quad \text{(SM)}_1 \text{ or } X
$$

Namely, though the thermally-averaged cross-section,

$$
\langle \sigma_{\text{ann}} v_{\text{rel}} \rangle(x) = \frac{4x}{K_2(x)^2} \int_1^{+\infty} d\bar{s} \quad \sqrt{\bar{s}} \cdot (\bar{s} - 1) \cdot K_1(2x\sqrt{\bar{s}}) \cdot \sigma_{\text{ann}}
$$

where $\bar{s}\equiv s/4m_\chi{}^2$ and evolution parameter $x=m_\chi/T$.

 $\langle \sigma v_{rel} \rangle$ needs information about s = + ∞ !?

Well...

Integrand of Thermally-Averaged Cross Section

Choose pre-freeze-out x-value, demand accuracy ϵ

 \implies Integrate over $[1, \bar{s}_{max}]$ so that $=(1-\epsilon)\times$ (full integral) \implies $|$ Partial-wave analysis w/ $\Lambda_{max}=2m_\chi$ √ \overline{s}_{max}

Conclusions & Future of this Work

These are elements of a project exploring the viability of **simplified** spin-2 mediated dark matter for $s_\chi=0,\frac{1}{2}$ $\frac{1}{2}$, 1. Generally...

- Relic density and partial-wave unitarity significantly constrain available parameter space in opposite ways.
- Indirect detection restricts models on threshold
- **Direct detection** limits are weak.
- Collider limits demand very weak coupling or heavy mediator.

∗ Expect to see something on the ArXiv soon! ∗

Furthermore, following this project's completion, we plan to optimize & rework our codes for public use.

Thank you for your attendance and attention!