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What has been achieved for the LHC?
difficulty

pert. order
LO

NLO

NNLO

NNNLO

2

~all LHC 
processes

many 
problems 

solved

many  
problems 
unsolved

⇠ 30%

⇠ 10%

⇠ 4%
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Wbb+multijet production at 
NLO

• An example of what can be 
done 

• Such results were 
unimaginable one decade 
ago 

• NLO at LHC is fully 
automated: aMC@NLO, 
BlackHat, GoSam, Helac-
NLO, OpenLoops, Recola, 
Sherpa, NJet, …

b jets, defined in an infrared safe way [43]. We do not introduce any corrections due to

possible mistagging of heavy and/or light jets.

q0

g

g

g

q
e

⌫

W

b̄

b

(a) qg ! q0ggW±bb̄

q0

g

g

g

q

b̄

b

e

⌫
W

(b) qg ! q0ggW±bb̄

q0

q

e

⌫

W

b̄

b

Q̄ Q̄

g

(c) qQ̄ ! q0Q̄gW±bb̄

FIG. 1. Representative diagrams for two subprocesses contributing to pp !Wbb̄+3-jet production.

The diagram (b) displays a contribution from closed loops of top and bottom quarks.

Below we give more technical details about our results including a brief description of

the one-loop matrix-element computation in the newly setup BlackHat library, details on

the renormalization schemes considered, numerical stability, validation, Monte-Carlo inte-

gration, input parameters, the considered observables as well our choices for the renormal-

ization and factorization scales. We end this section with a brief assessment of b mass e↵ects

in our calculation.

A. Virtual Matrix Elements

A new version [30] of the BlackHat library [29] is used to compute the required virtual

matrix elements, which includes significant upgrades for the computation of loop amplitudes

with internal and external massive particles. The library uses the unitarity method [31–33]

and its extension to massive particles [34] in order to compute loop amplitudes numerically.

These methods have already been applied by a number of groups for analytic as well as

numerical computations of massive amplitudes (see e.g. [11, 44, 45]). The present imple-

mentation is based on the numerical unitarity approach [29, 35, 36, 38] and its extension to

massive quarks [37]. In addition, a prescription to map the higher-dimensional Dirac algebra

into four-dimensional objects is used, which can be shown to be equivalent to the one given

in ref. [46] with some modifications.
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FIG. 5. The renormalization- and factorization-scale dependence of total cross sections for

W�bb̄+0, 1, 2, 3-jet+X production in the left and W+bb̄+0, 1, 2, 3-jet+X production to the right,

with µ0 = µr = µf = Ĥ 0
T/2. The upper four panels show the dependence of LO (dashed blue line)

and NLO (solid black line) predictions. The lower panel shows the K-factor (ratio of NLO/LO).

line, while in the case of Wbb̄+n-jet (n = 0, 1, 2, 3) production the dominant subprocess are

those with two quark lines (those are the subprocesses with most gluons allowed).

Another interesting di↵erence between W production in association with light jets and

Wbb̄ production with multiple light jets, is that for the former the leading-color approxima-

tion for one-loop matrix elements gave a very good approximation for physical observables

(at the level of 1 to 3%). Contrary to that, Wbb̄ production with light jets is largely dom-

inated by virtual contributions in our setup, and so the leading-color approximation is at

the order of 10% for physical observables. That is why all of our results in this article

include full-color information, and we only exploit the decomposition in a color expansion

for e�ciency of the computation. We again attribute this di↵erence to the unlike dominant

subprocesses.

20

Anger, Cordero, Ita, Sotnikov in Dec. 2017



Higgs boson transverse momentum 
spectrum at NNLO + N3LL

• Combines recent 
breakthrough computations  
at NNLO for H+1 jet   

• and a profound knowledge  
of QCD factorisation in the 
soft and collinear regime.  

• A ~6% precision for the 
transverse momentum 
spectrum (below the top-
quark threshold).   
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FIG. 2. Comparison of full fixed-order spectrum, the ab-
solute value of singular distribution, and the non-singular
distribution through to NNLO. Here d�n/dpT ⇠ O(pT ) for
pT ⌧ mH .

frames, where individual parton-level initial states are
compared (with q denoting the sum over quarks and an-
tiquarks of all light flavours). We point out that the (nu-
merically subdominant) qq channel turns out to be the
numerically most challenging, since contributions from
valence-valence scattering favor events with higher par-
tonic center-of-mass energy than in any of the other chan-
nels. The excellent agreement between fixed-order per-
turbation theory and SCET-predictions for the singular
terms serves as a very strong mutual cross check of both
approaches. It demonstrates that our calculation of the
non-singular terms is reliable over a broad range in pT ,
thereby enabling a consistent matching of the NNLO and
N3LL predictions.

Matching and results.— For a reliable description of
the transverse-momentum spectrum, the resummation
of large logarithms in d�s/dp2T has to be turned o↵ at
large pT . This can be seen clearly from Fig. 2, which de-
picts the full fixed-order spectrum, the absolute value of
singular distribution, and the non-singular distribution,
all through to NNLO. At pT ⌧ 50 GeV, the singular
distribution dominates the fixed-order cross section, and
the resummation of higher order logarithms is necessary.
Around 50 GeV, the singular and non-singular distri-
bution become comparable, and resummation has to be
gradually turned o↵. There are several di↵erent prescrip-
tions on how to turn o↵ the resummation [12, 16, 27, 66–
70]. In this letter, we follow Ref. [16] by introducing b
and pT dependent profile functions, defining

⇢(b, pT ) = ⇢l

h
1� tanh

⇣
4s
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t
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where ⇢(b, pT ) is used for µs = µs(b, pT ) = µB , ⌫s =
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FIG. 3. The Higgs-boson transverse momentum distribution
matched between FO and SCET. Dashed lines indicate central
scales of mH/2 and matching profile centered at 30 GeV. The
theoretical uncertainties are estimated by taking the envelope
of all scale and profile variations (see text). Ratio plots in
the lower panel presents the scale and profile variation with
respect to the central result for NNLO+N3LL (red dashed
line).

⌫s(b, pT ), and µh = µh(pT ), which appear in Eq. (3). ⇢l is
the initial scale for each profile, taken to be the canonical
scales in Eq. (7) so that at small pT the large logarithms
are resummed. ⇢r is the final scale for each profile, which
is chosen to be µh = µB = µs = µF = µR, while for ⌫s it
is mH . The parameters s and t govern the rate of transi-
tion between the fixed order result and the resummation,
where the transition starts at pT ' t� t/(2s), is centered
at pT = t, and ends at pT ' t+t/(2s). In our calculation,
we choose s = 1, and t = 20, 25, 30, 35, 40, 50 GeV
to estimate the uncertainties from di↵erent profiles. The
uncertainties for the final resummed + fixed-order pre-
diction are estimated by three-point variations of i) the
⇢l for µh about mH and ⇢r for all scales (varied simul-
taneously), and ii) the ⇢l for µB = µs and ⌫s about b0/b
(varied independently). We always fix ⌫B = mH . We
take the envelope of the resulting 66 curves as the uncer-
tainty band at each order. Further uncertainties in our
calculation include the missing four-loop cusp anomalous
dimension and the treatment of non-perturbative correc-
tions at large b. They are estimated to be negligible
compared with the aforementioned scale uncertainties.
Additional independent uncertainties related to the par-
ton distributions and value of ↵s(mZ) should be included
for a detailed phenomenological study.

The final matched transverse momentum spectrum is
shown in Fig. 3. We plot the distributions at LO+NLL,
NLO+NNLL, and NNLO+N3LL. We also plot the un-
matched NNLO distribution. At small transverse mo-
mentum, the fixed order distribution displays unphysical

Chen, Gehrmann, Glover, Huss, Li,  
Neill, Schulze, Stewart, Zhu in May 2017



Associated Higgs production at 
NNLO merged with parton-shower
• The interplay of radiation 

processes described by parton-
showers and fixed orders is 
getting better understood. 

• The merging of these two 
approaches has been achieved 
through NNLO for simple (but 
crucial) processes.  

• Important impact on 
phenomenology and a precise 
description of realistic 
processes.  
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Figure 7. The differential distributions of the invariant mass of the HZ system (left panel) and the
transverse momentum of the Higgs boson reconstructed from b-jets (right panel). The lower panel
illustrate ratio of full results (NNLO as well as NNLOPS) to the NNLOPS results without gg!HZ

contribution.

We start by examining the results without gg ! HZ contribution (left hand panels).
We note that both the fixed-order (green) and the HZNNLOPS after parton shower (red)
differ from the MC-truth result (blue). At low transverse momenta, this difference becomes
smaller when a larger jet-radius is considered (left bottom panel), which suggests that
the dominant reason for the difference is out-of-jet radiation from the bb̄-final state. At
larger transverse momenta the difference with respect to the MC-truth is instead smaller at
smaller jet-radius (top left panel), which points to the fact that in this region the difference
is mainly due to radiation from the initial state. We also notice that in the intermediate
transverse momentum region the fixed-order and HZNNLOPS show sizeable differences for
small jet radius, while these differences are more moderate when using a larger R. This can
be easily understood from the fact that the observable with larger R is more inclusive and
hence fixed-order and parton shower results are in better agreement.

We now move to discuss the plots including the gg ! HZ effects. First, we note that
the red and green bands in the top right panel if Fig. 8 are identical to the bands shown
in the right panel of Fig. 7. As expected when the radius becomes bigger (bottom right
panel) the fixed-order (green) and parton shower results (red) move closer to each other,
again because the observables become more inclusive. We also note that the uncertainty
bands are now larger compared to the results without gg ! HZ contribution. This was
already observed for the fiducial cross section and is due to the leading order description of
the gg!HZ contribution.

We now show the distribution of the transverse momentum of the bb̄-jet system in the
fiducial volume with and without the additional cut pt,Z > 150 GeV. The relevant plots are
shown in Fig. 9. First of all we note that the difference between treating the H!bb̄ decay at
NLO with respect to LO is very small, which leads to the conclusion that a parton shower
equipped with Matrix Element corrections to the H ! bb̄ branching provides a very good
estimation of the higher-order corrections. We also notice a Sudakov shoulder in the fixed-

– 16 –

Astill, Bizon, Re, Zanderighi in 2018  



Higgs cross-section at N3LO
• First, as a deep expansion 

around threshold 

• Now, in a closed complete 
form (Mistlberger in 2018)   

• Reflects a big progress since 
2016 in our mathematical 
understanding (elliptic 
Feynman integrals)

LO NLO

NNLO N3LO
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Figure 4: The figure displays the dependence of the Higgs boson production cross section on the
perturbative scale µ. The green, orange, blue and red lines correspond to a prediction made by
truncating the perturbative series at LO, NLO, NNLO and N3LO respectively.

expansion around z = 1 exploits a kinematic enhancement of the gluon luminosity in the collision
of protons for lower values of partonic center of mass energy to yield reliable predictions. The point
z = 1 represents the production threshold for a Higgs boson, i.e. the lowest possible amount of
energy required to produce a Higgs boson. In ref. [14] seven additional terms in the power series
were added. The quality of a threshold expansion for N3LO corrections was furthermore studied in
refs. [24, 25, 94]. Having now the complete coefficient functions at our disposal we want to reflect
on previous estimates and compare our exact analytical findings to the approximate results.

Using the same set-up as in the previous section to derive numerical predictions we find that
the hadronic cross section through N3LO in perturbative QCD in the infinite top quark mass limit
based on thirty terms in the threshold limit is given by

σThreshold-30
PP→H+X = 45.07± 0.26

−1.43 pb = 45.07 pb± 0.58
−3.23%. (5.1)

We observe a difference of 0.11 pb with respect to our new prediction, eq. (4.1). The scale variation
interval in eq. (4.1) is slightly larger. In ref. [14] it was estimated the effect of missing higher
order terms in the threshold expansion are less than 0.18 pb. We now see that this estimate was
sufficiently conservative.

In the remainder of this section we want to study the behaviour of N3LO corrections as a
function of the order where the threshold expansion is truncated. In particular we want to inves-
tigate its performance for contributions arising from different partonic initial states. In figure 5
we show the N3LO correction due to different initial sate partons based on a threshold expansion
(red) as a function of the order at which the expansion is truncated. In blue we also display our
new result to all orders in the threshold expansion as a reference. We observe that the first four
terms show particularly large changes in the derived prediction. Starting from the fifth term we
observe slow asymptotic improvement towards the full result. The nominally largest gluon-gluon

– 19 –

CA, Duhr, Dulat, Furlan, Gehrmann, Herzog,  
Lazopoulos, Mistlberger in 2016, Mistlberger in 2018  

The art in solving differential equations rests in finding an adequate transformation matrix T .
For certain differential equations in a single parameter an algorithmic solution exists [80–83] and
was nicely formulated in ref. [83]. This method applies if a transformation matrix can be found
that is comprised of ratios of polynomials in the parameters z and ϵ. For a large subset of integrals
in our vector of master integrals I⃗ such transformations can be found and we rely on a private
implementation of the algorithm outlined in ref. [83] to do so.

For another large class of master integrals it is necessary to find a transformation matrix that
contains square roots of polynomials of our parameter z. For these cases we can find the desired
transformation by finding suitable algebraic variable transformations that rationalises the square
roots involved. Once the roots are rationalised we can again employ the aforementioned algorithm.
We point out that this procedure is not particularly algorithmic but leads to a desired solution
fairly easily.

We encounter a further obstruction when solving differential equations for the system of RRR
master integrals. This obstruction involves the presence of elliptic integrals and we elaborate on
our solution in the following section.

3.2 An Elliptic Integral in Higgs Production

p2

p1p1

p2

(a)

p1

p2

p1

p2

(b)

Figure 1: Phase space integrals contributing to triple real corrections to Higgs boson production at
N3LO. The computation of these integrals involves elliptic integrals. Solid lines represent Feynman
propagators. Solid lines crossed by the dashed line correspond to cut-propagators. The doubled
line represents the on-shell constraint of the Higgs boson.

When solving differential equations for master integrals contributing to the triple real coefficient
functions of Higgs boson production at N3LO we encounter two coupled 4×4 systems of differential
equations that we could not decouple order by order in the dimensional regulator by conventional
means. In this section we discuss the differential equations in question and present our solution.

In figure 1 we display two scalar phase space integrals. Let us choose four master integrals with
the same propagators as the scalar integral in figure 1b.

Ei =

∫

dΦH+3
ni

p2145p
2
235p

2
1245p

2
1235

, pi1...in = pi1 + · · ·+ pin . (3.9)

– 7 –



Complete Higgs cross-
section at N3LO

• Threshold expansion was reliable 
for the gluon-gluon initial-state 
channel. 

• Unreliable for quark-initiated 
channels. 

• Now all integrals are known for 
the computation of  all  
2  -> 1  processes in N3LO 
massless QCD.  

• Could eventually bring theoretical 
predictions for Drell-Yan 
production to a precision of 0.1%

Mistlberger in 2018  
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Figure 5: The figure shows in red the contribution of the partonic coefficient function to the N3LO
correction of the Higgs boson cross section approximated by a threshold expansion. The x-axis labels
the order at which the expansion is truncated. The line in blue represents the contribution to all
orders in the threshold expansion and is displayed as a reference. Figures (a), (b), (c), (d), (e) and
(f) show the contribution due to the gg, qg, qq̄, qq, qQ initial state and the sum of all channels
respectively.

and quark-gluon channels are approximated better than their purely quark initiated counter parts.
The sum of all channels can be seen in figure 5f.

In order to see more clearly the quality of the threshold expansion for each channel we show in
figure 6 the impact of N3LO corrections on the hadronic cross section due to different partonic initial
states. The predictions in red are now based on a threshold expansion normalised to the respective
all order result. The x-axis shows the order at which the threshold expansion is truncated. The line
in blue at one serves as a reference. We observe that contributions originating from the gluon-gluon
channel are approximated within several per-mille including only a few terms in the expansion.
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Figure 5: The figure shows in red the contribution of the partonic coefficient function to the N3LO
correction of the Higgs boson cross section approximated by a threshold expansion. The x-axis labels
the order at which the expansion is truncated. The line in blue represents the contribution to all
orders in the threshold expansion and is displayed as a reference. Figures (a), (b), (c), (d), (e) and
(f) show the contribution due to the gg, qg, qq̄, qq, qQ initial state and the sum of all channels
respectively.

and quark-gluon channels are approximated better than their purely quark initiated counter parts.
The sum of all channels can be seen in figure 5f.

In order to see more clearly the quality of the threshold expansion for each channel we show in
figure 6 the impact of N3LO corrections on the hadronic cross section due to different partonic initial
states. The predictions in red are now based on a threshold expansion normalised to the respective
all order result. The x-axis shows the order at which the threshold expansion is truncated. The line
in blue at one serves as a reference. We observe that contributions originating from the gluon-gluon
channel are approximated within several per-mille including only a few terms in the expansion.

– 20 –



Jet production at N3LO i n 
DIS

• A first of a kind achievement.  

• fully differential cross-section 
at N3LO.  

• It exploits NNLO 
computations and knowledge 
of an inclusive cross-section 

• Used a “projection-to-Born 
method”, first developed at 
NNLO (Cacciari, Dreyer, Karlberg, Salam, 
Zanderighi in 2015)     0
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Figure 2. Kinematical distributions in single inclusive jet production in deep inelastic scattering
up to N3LO in QCD, compared to ZEUS measurements [54]. The error bars on the data represent
the statistical and systematic uncertainties added in quadrature; the uncertainty in the absolute
energy scale of the jets is shown separately as a shaded yellow band.

– 11 –

Currie, Gehrmann, Glover, Huss, Nietes  in 2018  



5-loop QCD β-function
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Figure 3: The values (3.13) and (3.14) of the coupling constants of QCD (left) and pure SU(N)
Yang-Mills theory (right) for which the absolute size of the NnLO contribution to the beta function
is a quarter of that of the Nn−1LO term for n = 1, 2, 3 (dashed curves) and 4 (solid curves).
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Figure 4: Left panel: The total N2LO, N3LO and N4LO results for the beta function of QCD for
four flavours, normalized to the NLO approximation. Right panel: The resulting scale dependence
of αs for a value of 0.2 at 40 GeV2, also normalized to the NLO result in order to show the small
higher-order effects more clearly, for the scale range 1 GeV2 ≤ µ2 ≤ 10 4 GeV2.
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Herzog, Ruijl, Uefa, Vermaseren, Vogt; 
also by Baikov, Chetyrkin, Kuehn (in 2017)



A day at work…

Compute:

by DizDot

Z 1

0

dt

t

log(1� tx) log(1� ty)

=

1X

n,m=1

x

n
y

m

nm(n+m)

x, y < 1



A day at work…

Guess:
Z 1

0

dt

t

log(1� tx) log(1� ty)

=

X

i

cifi (zi(x, y))

• In the rhs, known 
functions 

• with constant 
coefficients  

• and a single argument



the ubiquitous 
polylogarithms…

• All one-loop amplitudes in 4d QFT can be written 
in terms of two functions only!

log(z) Li2(z) = �
Z 1

0

log(1� tx)

t

=

1X

n=1

x

n

n

2

• More “polylogarithms” show up at two and higher 
loops… but not many

Li3(z), S12(z), Li4(z), S22(z), . . .



A day at work…

Guess:

• In the rhs, known 
polylogarithms 

• with constant coefficients  

• and a single argument 
which captures the 
singularities of the lhs. 

Z 1

0

dt

t

log(1� tx) log(1� ty)

=

X

i

ciPolyLogi (zi(x, y))



• polylogarithms have a nice behaviour under differentiation

• We can act on our ansatz with derivatives, simplifying both 
sides to simpler functions, all the way down to logarithms

d

dz
Li4(z) =

1

z
Li3(z),

d

dz
Li3(z) =

1

z
Li2(z), . . .

d

l+m

dx

l
dy

m

Z 1

0

dt

t

log(1� tx) log(1� ty) =

X

i

ci
d

l+m

dx

l
dy

m
PolyLogi (zi(x, y))

• We can then get easily a system of equations for the coefficients.

INTEGRATION LINEAR ALGEBRA



Multiple polylogarithms 
formally

• There is a vector space of “multiple polylogarithms” 

G(a1, a2, . . . , an, z) =

Z z

0

dt

t� a1
G(a2, . . . , an, t)

• Functional relations among polylogarithms or their derivatives, take the  
form of an algebra (multiplication rules)  
- shuffle, stuffle, Hopf algebras 

• Enormous breakthroughs in uncovering the rules (symbol, coproduct) 

• Computing multidimensional Feynman integrals in terms of such 
polylogarithms is now “targeted” research with powerful theorems which 
restrict every step of the integration within the vector space of polylogarithms. 

(Vermaseren; Gehrmann, Remiddi; Brown;  Goncharov; Duhr; …)



How to compute a multi -
loop amplitude

FEYNMAN RULES
BASIS OF 
MASTER  

INTEGRALS
POLYLOGARITHMS

NUMERICAL  
EVALUATION

COMPUTER 
ALGEBRA /  

Gauss elimination, 
unitarity methods  

…

EXPANSION  
around D=4

ISOLATION of UV/IR 
singularities



Fully known (analytically) 2-loop 
amplitudes for LHC processes

• parton+parton -> parton+parton 
(~2000) 

• parton+parton ->  (H,V) + 
parton (~2003) 

• gluon-gluon -> Higgs via quarks 
(~2007) 

• gluon-gluon -> Higgs via 
electroweak (~2006) 

• parton-parton -> diboson  
(~2014)

2 scales,  
massless propagators

3 scales,  
massless propagators

2 scales,  
massive propagators

4 scales,  
massless propagators



Fully known (analytically) 2-loop 
amplitudes for LHC processes

• parton+parton -> parton+parton 
(~2000) 

• parton+parton ->  (H,V) + 
parton (~2003) 

• gluon-gluon -> Higgs via quarks 
(~2007) 

• gluon-gluon -> Higgs via 
electroweak (~2006) 

• parton-parton -> diboson  
(~2014)

2 scales,  
massless propagators

3 scales,  
massless propagators

2 scales,  
massive propagators

4 scales,  
massless propagators

POLYLOGARITHMS



Where do polylogarithms 
come from?

• If an amplitude can be written 
in terms of polylogarithms 
exclusively, … 

• … what does this imply for the 
basis of master integrals?  

• Conjecture: There is a 
”canonical” basis of master 
integrals… 

• …which satisfies simple 
differential equations

@Ii

@xm
= (d� 4)A(m)

ij (~x)Ij

INTEGRATION LINEAR ALGEBRA

Johannes Henn



IS SYMBOLIC COMPUTER 
ALGEBRA ALWAYS SIMPLE?

FEYNMAN RULES
BASIS OF 
MASTER  

INTEGRALS
POLYLOGARITHMS

NUMERICAL  
EVALUATION

COMPUTER 
ALGEBRA /  

Gauss elimination, 
unitarity methods  

…

EXPANSION  
around D=4

ISOLATION of UV/IR 
singularities

THIS STEP CAN BE PROHIBITIVE FOR  
FUTURE APPLICATIONS

Need further insights



NUMERICAL REDUCTION

FEYNMAN RULES
BASIS OF 
MASTER  

INTEGRALS
POLYLOGARITHMS

NUMERICAL  
EVALUATION

NUMERICAL?

EXPANSION  
around D=4

ISOLATION of UV/IR 
singularities



NLO:solved with 
numerical reduction 
to master integrals

• Reduction of amplitudes to  
master integrals has been  
understood physically very well,  
in multiple ways. 

•   One-loop amplitudes in gauge 
theories = (Tree-amplitudes in 
gauge-theories) and (Integrals in 
scalar field theories)

Ossola, Pittau, Papadopoulos;  
del Aguila, Pittau; 
Ellis, Giele, Kunszt; 
Ellis, Giele, Kunszt, Melnikov; 
…



From NLO to 
NNLO

• A very beautiful structure of 
perturbation theory at NLO, 
where we can reduce the 
cross-section calculations to a 
few master integrals and  tree-
amplitudes. 

• It makes one dream that also 
higher orders NNLO, NNNLO, 
etc  can be reduced to master 
integrals in a similarly physical 
and efficient eay.  

• This dream is becoming real! 



5-gluon amplitudes at leading colour

2

FIG. 1. The 18 distinct topologies extractable from (1-loop)2

cuts.

are built from 425 irreducible numerators with 57 dis-
tinct topologies. 18 of these 57 can be extracted from
the (1-loop)2 cut configurations as shown in Fig. 1. This
means that all topologies with an additional propagator
including k1 + k2 are computed simultaneously with the
(1-loop)2 cuts. This is more e�cient since the parametri-
sations of the cut loop momentum solutions are much
simpler. The remaining 39 can be extracted from a fur-
ther 31 configurations shown in Fig. 2. The 8 topologies
shown in Fig. 3 have divergent maximal cuts and are ex-
tracted simultaneously with sub-topologies within the set
of 31 2-loop cuts.

The construction of an integrand basis has been dis-
cussed before using the language of computational al-
gebraic geometry through polynomial division over a
Gröbner basis [10, 14]. In this work we took a simpler
approach which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a lin-
ear system which can be performed e�ciently with finite
field reconstruction methods. We begin by expanding the
loop momenta around a basis of external momenta and
transverse directions (similarly to the methods of Van
Neerven and Vermaseren [34]),

kµ
i

= kµk,i + kµ?,i

, (3)

FIG. 2. 31 distinct topologies extractable from 2-loop cuts.

where kk lives in the physical space spanned by the exter-
nal momenta of the topology and k? lives in the trans-
verse space. We further decompose the transverse space
into four dimensional and (�2✏) dimensional spaces,

k?,i

= k
[4]
?,i

+ k
[�2✏]
?,i

. The size of the 4-d transverse
space (which we will call the spurious space) has di-
mension d?,[4] = 4 � dk where dk is equal to the num-
ber of independent momenta entering the vertices of the
topology, up to a maximum value of four. We choose a
spanning basis v for the physical space of each topology

kµk,i =
P

dk
j=1 aijv

µ

j

and a basis w for the spurious space

k
µ,[4]
?,i

=
P

d?,[4]

j=1 b
ij

wµ

j

, with v
i

.w
j

= 0.
The coe�cients in the physical space kk are functions

of the a
ij

(k
i

) ⌘ a
ij

({D}, {k.q}) where D are the inverse
propagators and k

i

.q
j

are the physical space irreducible
scalar products (ISPs) for a given topology, where q

j

are
suitable linear combinations of external momenta. The
coe�cients in the spurious and (�2✏)-d spaces are func-

tions of additional ISPs k
i

.w
j

and µ
ij

= �k
[�2✏]
?,i

.k
[�2✏]
?,j

.
Having completed this decomposition we find relations
between monomials in the ISPs by expanding Eq. (3),

µ
ij

= k
i

.k
j

� kk,i.kk,j � k
[4]
?,i

.k
[4]
?,j

. (4)

From this equation it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimen-
sionally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs k

i

.q
j

and
k
i

.w
j

where the power counting is restricted by the renor-
malizability constraints [35].
This basis is trivial to obtain without polynomial divi-

sion but results in high rank tensor integrals with a com-
plicated infrared (IR) pole structure. Instead we prefer
to map to a new basis which prefers to keep monomials
in µ

ij

in the numerator and make the ✏ ! 0 limit eas-
ier to perform. The map to the new basis is performed
in four steps: 1) write down a complete set of monomi-
als in k

i

.q
j

, k
i

.w
j

and µ
ij

obeying the power counting
restrictions. 2) Order the monomials with respect to a
set of reasonable criteria (for example prefer lower rank
monomials or prefer monomials proportional to µ

ij

). 3)
Map all monomials onto the simple basis and construct
a linear system according to the ordering of variables. 4)
Solve the linear system for the independent monomials in
the new basis. The result of this procedure is a process

FIG. 3. The 8 distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies

4

✏

�4
✏

�3
✏

�2
✏

�1
✏

0

b
A

(2),[0]
��+++ 12.5 27.7526 -23.773 -168.117 -175.207±0.004

P

(2),[0]
��+++ 12.5 27.7526 -23.773 -168.116 —
b
A

(2),[0]
�+�++ 12.5 27.7526 2.5029 -35.8094 69.661±0.009

P

(2),[0]
�+�++ 12.5 27.7526 2.5028 -35.8086 —

TABLE II. The numerical evaluation of b
A

(2),[0](1, 2, 3, 4, 5)
using {x1 = �1, x2 = 79/90, x3 = 16/61, x4 = 37/78, x5 =
83/102} in Eq.(6). The comparison with the universal pole
structure, P , is shown. The +++++ and -++++ amplitudes
vanish to O(✏) for this (ds � 2)0 component.

have performed gauge invariance checks at the integrand
level using the Feynman diagram setup.

To obtain a numerical value for the complete am-
plitude after integration we perform a sector decom-
position of the basis integrals combined with Monte
Carlo integration. After applying dimension shifting re-
lations [2, 47, 48] to rewrite the extra-dimensional ISPs
as standard integrals we processed the full set of inte-
grals using both Fiesta [49] and pySecDec [50] pack-
ages. This setup was validated with the four-gluon he-
licity amplitudes and cross-checked against results in the
literature [25]. Simple topologies with 2 ! 2 kinematics
were reduced to the known MIs of Ref. [51] using IBPs
from Fire5 [52] and Reduze2 [53] and dimensional re-
currence relations from LiteRed [54]. This gave a sub-
stantial improvement in the numerical accuracy.

The results for evaluation at a specific phase-space
point are given in Tables II and III for the amplitudes

bA(2),[i]
�1�2�3�4�5

=
A(2),[i](1�1 , 2�2 , 3�3 , 4�4 , 5�5)

ALO(1�1 , 2�2 , 3�3 , 4�4 , 5�5)
, (7)

with helicities �
i

and A(2) =
P2

i=0(ds � 2)iA(2),[i]. The
leading order amplitudes ALO are the tree-level for the
--+++ and -+-++ and rational one-loop amplitudes for
the +++++ and -++++. The finite (1-loop)2 configuration
A(2),[2] is presented in Tab. IV. Numerical accuracy is not

✏

�4
✏

�3
✏

�2
✏

�1
✏

0

b
A

(2),[1]
+++++ 0 0.0000 -2.5000 -6.4324 -5.311±0.000

P

(2),[1]
+++++ 0 0 -2.5000 -6.4324 —
b
A

(2),[1]
�++++ 0 0.0000 -2.5000 -12.749 -22.098±0.030

P

(2),[1]
�++++ 0 0 -2.5000 -12.749 —
b
A

(2),[1]
��+++ 0 -0.6250 -1.8175 -0.4871 3.127±0.030

P

(2),[1]
��+++ 0 -0.6250 -1.8175 -0.4869 —
b
A

(2),[1]
�+�++ 0 -0.6249 -2.7761 -5.0017 0.172±0.030

P

(2),[1]
�+�++ 0 -0.6250 -2.7759 -5.0018 —

TABLE III. The numerical evaluation of b
A

(2),[1](1, 2, 3, 4, 5)
and comparison with the universal pole structure, P , at the
same kinematic point of Tab. II.

b
A

(2),[2]
+++++

b
A

(2),[2]
�++++

b
A

(2),[2]
��+++

b
A

(2),[2]
�+�++

✏

0 3.6255 -0.0664 0.2056 0.0269

TABLE IV. The numerical evaluation of finite
b
A

(2),[2](1, 2, 3, 4, 5) helicity amplitudes at the same kine-
matic point of Tab. II. As only one-loop integrals are
required for these amplitudes the integration error is
negligible.

an issue here since the integrand level reduction already
leads to a basis of one-loop MIs. In addition we find
complete agreement with the finite part of the known
integrated ‘all-plus’ amplitude [18].
In cases where the ✏ pole structure of the amplitudes

is non-trivial we compared with the known universal IR
structure [55–58] including the dependence on d

s

ex-
tracted from the FDH scheme results [59]. The lead-
ing pole in 1/✏4 was verified analytically and is therefore
quoted exactly in Tabs. II and III. By comparing the
agreement in the poles between the (d

s

�2)0 and (d
s

�2)1

we clearly see the e↵ect of the highest rank tensor inte-
grals which only appear in the latter case. We find con-
vincing agreement between the poles and our amplitudes
within the numerical integration error [60]. Since the full
amplitude is the sum of all three parts we see in this
case that the simple (d

s

� 2)0 part dominates and the
complete amplitude is evaluated with sub-percent level
accuracy. This feature is probably not generic for the
whole phase-space however.

CONCLUSIONS

The techniques presented in this letter have allowed
the first look at a set of five-point two-loop helicity am-
plitudes with phenomenological relevance for LHC ex-
periments. We have found that unitarity cutting meth-
ods in six dimensions can be combined with finite field
reconstruction techniques to compute multi-scale dimen-
sionally regulated two-loop amplitudes in QCD. In many
cases it was possible to obtain completely analytic ex-
pressions for the integrands of the helicity amplitudes.
While a lot of e↵ort was taken to find manageable ex-

pressions, the final integrand form was still extremely
large and significantly more challenging than the previ-
ously known ‘all-plus’ helicity configuration. One obvious
next step is to include a full set of integration-by-parts
identities and reduce the amplitude onto a basis of ana-
lytically computed MIs. Promising new approaches that
use finite field reconstruction [61] or algebraic geometry
analyses [27, 62–65] could make this possible in the near
future. We expect there will be other ways to improve
the integrand form by using canonical bases [29] and local
integrand representations [66–68] though at the present
time more work is needed to investigate these approaches.

Badger, Bronunm-Hansen, Hartanto, Peraro in 2017  

Abreu, Cordero, Ita, Page, Zeng in 2017

level amplitude. As expected, the first two leading poles are helicity independent.

A(2)/
�A(1)(✏ = 0)

�
✏�2 ✏�1 ✏0

(1+, 2+, 3+, 4+, 5+) -5.000000000 -3.8931790255 5.9810885816

(1�, 2+, 3+, 4+, 5+) -5.000000000 -16.322002103 -10.383813287

TABLE I. Numeric results truncated to 10 significant figures for the two-loop all-plus and single-

minus helicity amplitudes, normalized to the finite one-loop amplitudes truncated to leading order

in ✏, at the kinematic point of eq. (IV.1).

A(2)/A(0) ✏�4 ✏�3 ✏�2 ✏�1 ✏0

(1�, 2�, 3+, 4+, 5+) 12.5000000 25.46246919 -1152.843107 -4072.938337 -3637.249567

(1�, 2+, 3�, 4+, 5+) 12.5000000 25.46246919 -6.121629624 -90.22184215 -115.7836685

TABLE II. Numeric results truncated to 10 significant figures for the two-loop split and alternating

MHV amplitudes, normalized to the tree level, at the kinematic point of eq. (IV.1).

To validate our results, we first reproduce the universal ultraviolet/infrared pole structure

of the amplitudes [65], which we summarize in appendix A in the context of two-loop five-

gluon amplitudes in the leading-color approximation. Computing the prediction for the pole

structure requires the five-point one-loop amplitudes up to order ✏ for all four independent

helicity configurations. For this, we used our own implementation of numerical unitarity at

one loop, which we checked up to order ✏0 against results from BlackHat [22]. Within our

check, the precision of the numerical results we obtain for the poles is limited by the fact

that we use Fiesta 4 [64] for the one-loop pentagon integral. Using our code, we confirm

the published results for the all-plus helicity amplitudes [3, 14, 16]. We also validate the

results of [19] which appeared during the final stages of the preparation of this article.

Finally, we note that although we only present results for the four independent helicity

configurations, we have also verified the pole structure for the other helicity configurations

obtained by parity conjugation or permutation of external legs. Since our calculation is

based on a numerical setup, these amount to independent calculations that give us an

internal consistency check of our implementation.
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Are always master 
integrals simple? 

• The canonical basis of master 
integrals does not always exist… 

• or, if it does, we do not know how to 
find it.  

• Not all amplitudes can be written in 
terms of polylogarithms exclusively 

• New functions (elliptic integrals) have 
emerged in two-loop amplitudes with 
massive propagators and in Higgs 
production at N3LO.  

• Fast-paced progress in figuring out 
their systematics. 

S =
ψ1 (q)
π

[E2;0 (w1 (q) ;−1;−q)+E2;0 (w2 (q) ;−1;−q)+E2;0 (w3 (q) ;−1;−q)] .

Eq. (61) differs from eq. (60) only in the arguments w , w , w of the elliptic dilogarithms. These

which relates the ELin;m-function with argument (−q) to a linear combination of ELin;m-functions
with argument q. The solution in the equal mass case in eq. (54) can then be written as

S=
3ψ1 (q)
iπ

{

1
2
Li2 (r3)−

1
2
Li2
(

r−13
)

+ELi2;0 (r3;−1;−q)−ELi2;0
(

r−13 ;−1;−q
)

}

. (58)

The combination inside the curly bracket occurs frequently and we introduce for y ∈ {−1,1} the
notation

E2;0 (x;y;q) =
1
i

[

1
2
Li2 (x)−

1
2
Li2
(

x−1
)

+ELi2;0 (x;y;q)−ELi2;0
(

x−1;y−1;q
)

]

. (59)

We call the function E2;0 (x;y;q) an elliptic dilogarithm. We remark that different definitions of
elliptic polylogarithms have been considered in [23–27]. With the notation above we may write
the solution in the equal mass case as

S = 3
ψ1 (q)
π

E2;0 (r3;−1;−q) . (60)

9 The unequal mass case
The final result for the two-loop sunrise integral with arbitrary masses in two space-time dimen-
sions is almost as simple as the result in the equal mass case given in eq. (60). The result in the
unequal mass case can be written as

S =
ψ1 (q)
π

[E2;0 (w1 (q) ;−1;−q)+E2;0 (w2 (q) ;−1;−q)+E2;0 (w3 (q) ;−1;−q)] . (61)

Eq. (61) differs from eq. (60) only in the arguments w1, w2, w3 of the elliptic dilogarithms. These
arguments are given by

wi = eiβi , βi = π
F (ui,k)
K (k)

, ui =

√

e1− e2
x j,k− e2

, x j,k = e3+
m2jm

2
k

µ4
. (62)

In the definition of ui we used the convention that (i, j,k) is a permutation of (1,2,3). In the
definition of βi the incomplete elliptic integral of the first kind appears, defined by

F (z,x) =

z∫

0

dt
√

(1− t2)(1− x2t2)
. (63)

The quantities wi and βi depend in general on the masses mi and the nome q. In the equal mass
case m1 = m2 = m3 = m they are independent of q and we have

wi (q) = r3, βi (q) =
2π
3
. (64)
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Adams, Bogner, Weinzierl

The integration in u is trivial and we get

Tri(d; s) =
md−2

2 s (d− 4)
ln
(

1− s

4m2

)

+
(d− 3)

s

1

π

∫ ∞

4m2

dt

t− 4m2
ImBub(d; t)

[

ln
(

1− s

4m2

)

− ln
(

1− s

t

)]

. (3.8)

Note that the above result holds for any d (within the considered range) independently of the actual explicit
form of the inserted amplitude Bub(d;u).

If 0 < s < 4m2 the result (3.8) is real, while for s > 4m2 it develops an imaginary part. In order to
properly extract it, it is enough to notice that, for s > 4m2, the s → s+ iϵ prescription gives

ln

(

1− s+ iϵ

4m2

)

= ln
( s

4m2
− 1
)

− i π , (3.9)

and
∫ ∞

4m2

dt

t− 4m2
ImBub(d; t) ln

(

1− s+ iϵ

t

)

=

∫ s

4m2

dt

t− 4m2
ImBub(d; t)

[

ln
(s

t
− 1
)

− i π
]

+

∫ ∞

s

dt

t− 4m2
ImBub(d; t) ln

(

1− s

t

)

. (3.10)

Collecting results and combining the various terms, the imaginary part of Tri(d; s) for s > 4m2 becomes

1

π
ImTri(d; s) = − md−2

2 s (d− 4)
− (d− 3)

s

1

π

∫ ∞

s

dt

t− 4m2
ImBub(d; t) . (3.11)

It is to be noted, again, that the above result has been obtained from Eq.(3.8) independently of the
explicit analytic expression of ImBub(d;u). As a check, we can write the dispersion relation for the triangle
amplitude in terms of its imaginary part (we take s < 4m2 for simplicity)

Tri(d; s) =
1

π

∫ ∞

4m2

du

u− s
ImTri(d;u) . (3.12)

By exchanging the order of integrations according to
∫ ∞

4m2

du

∫ ∞

u
dt =

∫ ∞

4m2

dt

∫ t

4m2

du ,

Eq.(3.8) is easily recovered.
Summarising, the use of the dispersive representation of the inserted amplitude Bub(d;u) in the Euler

form of the solution of the differential equation for the triangle amplitude gives, almost at once, the
explicit form of Tri(d; s), Eq.(3.8) in terms of ImBub(d;u). The imaginary part ImTri(d; s) of the triangle
amplitude Eq.(3.11) can also be written in terms of ImBub(d;u), without explicit reference to the analytic
form of the latter. The resulting dispersion relation Eq.(3.12) can be useful if Tri(d;u) appears within the
inhomogeneous terms of the equations for the amplitudes of some other process (such as for instance the
QED light-light graphs).

4 The sunrise as iteration of the bubble graph

Let us consider the sunrise scalar amplitude defined as

S(d;−p2,m1,m2,m3) = ✲

✫✪
✬✩m1

m2

m3

p

=

∫

D
dk

∫

D
dl

1

(k2 +m2
1)(l

2 +m2
2)((p− k − l)2 +m2

3)
, (4.1)

6
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from the presentation of Claude Duhr at Loops and Legs 2018
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Higgs pair production at 
NLO (2-loop)

• Two-loop amplitude is 
required.  

• Calculated with numerical 
methods.  

• A promising avenue when 
analytic methods fail for 
computing multi-scale 
amplitudes. 

Borowka, Greiner, Heinrich, Jones, Kemer,  
Schienk, Schubert, Zirke



A PURELY NUMERICAL 
APPROACH?

FEYNMAN RULES NUMERICAL  
EVALUATION

EXPANSION  
around D=4

ISOLATION of UV/IR 
singularities

Bypasses the problem of elliptic 
+ other unknown functions that 
may emerge

Bypasses  the problem  
of algebraically demanding 
reductions to master integrals



Numerical approaches
• Direct numerical integrations 

of Feynman integrals are 
complicated due to IR/UV and 
thresholds.   

• UV/IR need to be subtracted 
away before integration.  

• Integrable singularities require 
a deformation of the contour 
of integration. Soft+collinear+threshold  

singularities



Numerical approaches

• IR/UV counterterms can be found 
algorithmically for arbitrary loops 

• A sector-decomposition algorithm  
can disentangle overlapping 
singularities  
(Binoth, Heinrich; …) 

• Contour deformations can be 
produced algorithmically for 
arbitrary loops  
(Nagy, Soper; …)

• IR/UV counterterms have been 
found only at one-loop 
(Nagy, Soper) 

• Contour deformations are known 
at one-loop and beyond for 
processes with massless 
propagators. (Nagy, Soper; Becker, 
Weinzierl), But not efficient! 

• A promising field of research with 
space for new ideas

Feynman parameter space Momentum space



RENDERING 2-LOOP 
FEYNMAN AMPITUDES FINITE

• Two-loop integrals become divergent when 
internal particles in the loop become collinear to 
external particles, or they are soft.  

• Removing these singularities of two-loop is 
complicated.   

• Singularities are many and highly entangled!
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Nested subtractions
• Order the singular regions by 

their “volume” 

• Subtract an approximation of 
the integrand in the smallest 
volume 

• Then, proceed to the next 
volume and repeat until there 
are no more singularities to 
remove.  

14

of Eq. (21), namely that the divergences from PS ⇢ are equal for �(n) and t⇢�(n),

�(n)
�

�

div n̂[⇢]
� t⇢�

(n)
�

�

divn̂[⇢]
=

Y

I

Z

d⌧ (I)

Z

dD�1z(I)

Z

d⌘(I)

Z

dD�1y(I) ⇥(n̂[⇢])

⇥
h

S(⇢)
{µ

I

}(z
(I)) J (⇢)µ

I

⌫
I

I (z(I), y(I)) H(⇢)
{⌫

I

}(y
(I))

� S(⇢)
{µ

I

}(⌧
(I)) �µ

I

I �̄I,µ0
I

J
(⇢)µ0

I

⌫0
I

I (z(I), ⌘(I)) �̄I,⌫0
I

�⌫
I

I H(⇢)
{⌫

I

}(y
(I))

i

�

�

�

div n̂[⇢]

= 0 , (28)

where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2
I ! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�

� t⇢
�

�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
P

�(n),

Ḡ(n) =
X

�(n)

2

4�
X

N2N [�(n)]

Y

⇢2N

�

� t⇢
�

�(n) + R(n) �(n)

3

5 . (30)

The products in Eqs. (29) and (30) are ordered with the larger PSs to the right of smaller PSs. Thus, the first

approximation operators t⇢ to act on �(n) involve the fewest points on the light cones or at short distances. As in Eq.

(20), the approximation operators act on the diagram over the full integration region, and are not restricted to the

neighborhood of the corresponding pinch surface.

Among the approximation operators that appear in R(n)�(n), we may identify the smallest, ⇢� , for which all vertices

approach the origin, that is, for which H(�
�

) = �(n). Now because ⇢� is the smallest PS, it nests with every other

pinch surface. Its approximation operator, which we denote by tuv for any diagram, always appears to the left of

every other operator in Eq. (30). Operator tuv acts only on the external propagators that attach to �(n). We can

thus separate it in the sum over nestings, and we find

Ḡ(n) =
X

�(n)

8

<

:

tuv�(n) + (1 � tuv)

2

4�
X

N2N
P

[�(n)]

Y

⇢2N

�

� t⇢
�

�(n) + R(n)
P �(n)

3

5

9

=

;

, (31)

Ozan Erdogan, George Sterman
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where ⇥(n̂[⇢]) restricts the integration to the reduced neighborhood n̂[⇢] [Eq. (25)]. This integral over the reduced

neighborhood converges because of the accuracy of the soft-collinear and hard-collinear approximations in the entire

reduced neighborhood n̂[⇢]. The PSs internal to the original neighborhoods n[⇢] have been removed by construction.

Equation (28) is the main result we will use for applications in the following sections, treating the neighborhood of

each PS separately. As a more general result, however, we will show that all divergent contributions to amplitudes

can be written without restriction to specific regions, in terms of a construction based on nested subtractions [7],

which we now discuss.

D. Nested subtractions

The quantities t⇢� [Eq. (20)] can also be thought of as counterterms for ultraviolet divergences associated with the

limits x2
I ! 0 in the partonic matrix elements [Eq. (2)] and with multieikonal amplitudes [Eq. (4)]. We will denote an

arbitrary n-loop diagram that is one-particle irreducible in the xI channel as �(n). Following the momentum-space

procedure of Ref. [7], we define a regulated version of �(n) by

R(n) �(n) = �(n) +
X

N2N [�(n)]

Y

⇢2N

�

� t⇢
�

�(n) , (29)

where N [�] is the set of all nonempty nestings for diagram �. We will refer to R(n) as the subtraction operator at

nth order. We may then write for the full nth-order xI -irreducible partonic amplitude (5), Ḡ(n) =
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FIG. 1. Displayed are the conventions for assigning propagators in a two-loop diagram.

of so-called adapted coordinates: the inverse propagator variables ⇢li, and the auxiliary

variables ↵li and µi
l. The variables µi

l are dependent and fixed by (II.15). The vectors ni

form an orthogonal basis transverse to the scattering plane, i.e ni ·pj = 0. Labels in B✏ refer

to directions beyond four-dimensions and labels in Bct denote transverse directions within

four dimensions. For each strand l of the diagram we use a distinct basis of the scattering

plane, spanned by the vectors vil ,

vil = (Gl)
ijpj , with i, j 2 Bp

l [ Bt
l , (II.16)

where (Gl)ij is the inverse of the Gram matrix,

(Gl)ij = pi · pj with i, j 2 Bp
l [Bt

l . (II.17)

The index set Bp
l labels the external momenta which leave the strand l. These momenta

are completed with other independent external momenta pi, with i 2 Bt
l , so as to span the

whole scattering plane. This parameterization follows the conventions of ref. [25], with the

caveat that the vectors spanning Bct are no longer normalized.

The inverse coordinate transformation is often useful and is given by

↵li = pi · `l , i 2 Bt
l , (II.18)

↵li = ni · `l , i 2 Bct , (II.19)

⇢li = (`l � qli)
2 (II.20)

The on-shell variety is then defined by setting the propagator variables ⇢li to zero. In

D-dimensions the variables ↵li form an independent complete set of coordinates on the

13
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We find that the following integrand is free of all the above singularities,
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In the above,
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. . .

, . . . (4.5)

4.2 Subtraction for the two-loop cross-box
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Figure 2. The two-loop cross-box

The two-loop cross-box is depicted at Fg. 2. The exernal momenta satisfy,

p1 + p2 + p3 + p4 = 0, p

2
i

= 0, p

2
12 = s, p

2
23 = t, p

2
13 = u = �s � t. (4.6)

We note that for the purposes of analytic continuation, only real parts of the Man-

delstam variables satisfy a momentum conservation relation s + t + u = 0. The

– 3 –
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The two-loop cross-box is depicted at Fg. 2. The exernal momenta satisfy,

p1 + p2 + p3 + p4 = 0, p
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= 0, p

2
12 = s, p

2
23 = t, p

2
13 = u = �s � t. (4.6)

We note that for the purposes of analytic continuation, only real parts of the Man-

delstam variables satisfy a momentum conservation relation s + t + u = 0. The
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Mandelstam variables are assigned the following imaginary parts:

s + l�, t + i�, u + i� = �s � t + i�. (4.7)

Therefore, for the evaluation of the integral and its counterterms one should first

perform the analytic continuation to the kinematic region which is interested in and

only then apply momentum conservation.

We find that the following is free of all singularities:
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Les Houches wish-list

Process State of the Art Desired
H d‡ @ NNLO QCD (expansion in 1/mt) d‡ @ NNNLO QCD (infinite-mt limit)

full mt/mb dependence @ NLO QCD full mt/mb dependence @ NNLO QCD
and @ NLO EW and @ NNLO QCD+EW
NNLO+PS, in the mt æ Œ limit NNLO+PS with finite top quark mass e�ects

H + j d‡ @ NNLO QCD (g only) d‡ @ NNLO QCD (infinite-mt limit)
and finite-quark-mass e�ects and finite-quark-mass e�ects
@ LO QCD and LO EW @ NLO QCD and NLO EW

H + 2j ‡tot(VBF) @ NNLO(DIS) QCD d‡(VBF) @ NNLO QCD + NLO EW
d‡(VBF) @ NLO EW
d‡(gg) @ NLO QCD (infinite-mt limit) d‡(gg) @ NNLO QCD (infinite-mt limit)
and finite-quark-mass e�ects @ LO QCD and finite-quark-mass e�ects

@ NLO QCD and NLO EW
H + V d‡ @ NNLO QCD with H æ bb̄ @ same accuracy

d‡ @ NLO EW d‡(gg) @ NLO QCD
‡tot(gg) @ NLO QCD (infinite-mt limit) with full mt/mb dependence

tH and d‡(stable top) @ LO QCD d‡(top decays)
t̄H @ NLO QCD and NLO EW
tt̄H d‡(stable tops) @ NLO QCD d‡(top decays)

@ NLO QCD and NLO EW
gg æ HH d‡ @ NLO QCD (leading mt dependence) d‡ @ NLO QCD

d‡ @ NNLO QCD (infinite-mt limit) with full mt/mb dependence

Table 1: Wishlist part 1 – Higgs (V = W, Z)

In the context of Higgs-boson observables, this issue is discussed in some detail in Refs. [39,
40] (see also references therein); general considerations about this issue can also be found in
Section 2.8.

1.1.1 Final states involving the Higgs Boson
Now that the Higgs boson has been discovered, the next key step is the detailed measurement of
its properties and couplings. Already much has been accomplished during the 2011–2012 running
at the LHC, but di�erential measurements, for example, are still in their infancy, due to the lack
of statistics. Given its importance, a great deal of theoretical attention has already been given to
calculations of the Higgs-boson production sub-processes for each of the production modes [38–
40] including a concise summary of the predictions available for each channel.2 Nevertheless, as
indicated in Table 1.1, more precise calculations are needed.

H: The current situation is well summarized in Refs. [38–40]: we know the production cross
section for the gg fusion subprocess to NNLO QCD in the infinite-mt limit and including
finite-quark-mass e�ects at NLO QCD and NLO EW. The current experimental uncer-
tainties associated with probing the gg æ H process cross section are of the order of
20–40%, depending on the amount of model-dependent assumptions. Theoretically, the
uncertainty is of the order of 15%, with the uncertainties due to PDF+–s and higher-order
corrections, as estimated through scale variations, both being on the order of 7–8%. The
accuracy of the experimental cross section is statistically limited, with the total error ex-
pected to decrease to the order of 10% with 300 fb≠1 in Run 2, running at an energy close

2For more references, see also Ref. [41].
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Process State of the Art Desired
tt̄ ‡tot(stable tops) @ NNLO QCD d‡(top decays)

d‡(top decays) @ NLO QCD @ NNLO QCD + NLO EW
d‡(stable tops) @ NLO EW

tt̄ + j(j) d‡(NWA top decays) @ NLO QCD d‡(NWA top decays)
@ NNLO QCD + NLO EW

tt̄ + Z d‡(stable tops) @ NLO QCD d‡(top decays) @ NLO QCD
+ NLO EW

single-top d‡(NWA top decays) @ NLO QCD d‡(NWA top decays)
@ NNLO QCD + NLO EW

dijet d‡ @ NNLO QCD (g only) d‡ @ NNLO QCD + NLO EW
d‡ @ NLO EW (weak)

3j d‡ @ NLO QCD d‡ @ NNLO QCD + NLO EW
“ + j d‡ @ NLO QCD d‡ @ NNLO QCD + NLO EW

d‡ @ NLO EW

Table 2: Wishlist part 2 – Jets and Heavy Quarks

quarks. In all three cases, it is necessary to know the cross section (with top decays) at
NLO QCD, possibly including NLO EW e�ects.

HH: The self-coupling of the Higgs boson arises from the EW symmetry breaking of the Higgs
potential and measuring the triple-Higgs-boson coupling then directly probes the EW
potential. Double-Higgs production via gluon fusion, used to measure the triple-Higgs
coupling, is known at LO QCD with full top mass dependence, including the leading
finite-mass e�ects at NLO QCD [52,53] and at NNLO QCD in the infinite-mt limit [54]. It
may be necessary to compute the full top mass dependence at NLO QCD. The production
cross section for double-Higgs production is small, and the backgrounds non-negligible.
Nonetheless, it is hoped that a 50% precision on the self-coupling parameter may be
possible with 3000 fb≠1 at 14 TeV [42]. Other double-Higgs production processes, such as
via gluon fusion or associated production with W/Z bosons, are mostly known to NLO
QCD (excluding final states with top quarks) and were recently discussed in Refs. [55,56].
Owing to the strong suppression of their cross sections, their observability at the LHC is
extremely challenging.

1.1.2 Final states involving Jets or Heavy Quarks
tt̄: Precision top physics is important for a number of reasons. It is by far the most massive

quark, and it is possible that new physics might have a strong coupling to top quarks;
hence the need for precision predictions. For example, a forward–backward asymmetry
has been observed at the Tevatron larger than predicted by NLO QCD+EW predictions.
The larger than expected asymmetry may be the result of new physics, due to missing
higher-order corrections, or caused by unknown problems in the experimental analysis.
At the LHC, the dominant production mechanism for top pair production is through gg
fusion, for basically all kinematic regions. Thus, a comparison of precise top-quark mea-
surements with similar predictions can greatly help the determination of the gluon PDF,
especially at high x where the current uncertainty is large. The present experimental
uncertainty on the total top-quark pair cross section is on the order of 5% for the dilep-
ton final state, and should improve for the lepton + jets final state to be of the same
order [57, 58]. Note that a sizeable portion of that uncertainty is due to the luminosity
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Process State of the Art Desired
V d‡(lept. V decay) @ NNLO QCD d‡(lept. V decay) @ NNNLO QCD

d‡(lept. V decay) @ NLO EW and @ NNLO QCD+EW
NNLO+PS

V + j(j) d‡(lept. V decay) @ NLO QCD d‡(lept. V decay)
d‡(lept. V decay) @ NLO EW @ NNLO QCD + NLO EW

VVÕ d‡(V decays) @ NLO QCD d‡(decaying o�-shell V)
d‡(on-shell V decays) @ NLO EW @ NNLO QCD + NLO EW

gg æ VV d‡(V decays) @ LO QCD d‡(V decays) @ NLO QCD
V“ d‡(V decay) @ NLO QCD d‡(V decay)

d‡(PA, V decay) @ NLO EW @ NNLO QCD + NLO EW
Vbb̄ d‡(lept. V decay) @ NLO QCD d‡(lept. V decay) @ NNLO QCD

massive b + NLO EW, massless b
VVÕ“ d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
VVÕVÕÕ d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
VVÕ + j d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
VVÕ + jj d‡(V decays) @ NLO QCD d‡(V decays)

@ NLO QCD + NLO EW
““ d‡ @ NNLO QCD + NLO EW qT resummation at NNLL matched to NNLO

Table 3: Wishlist part 3 – Electroweak Gauge Bosons (V = W, Z)

VVÕ: With precision measurements of double-vector-boson production (VVÕ), one has a han-
dle on the determination of triple gauge couplings, and a possible window onto new
physics. Currently, the cross sections are known to NLO QCD (with V decays) and
to NLO EW (with on-shell or at least resonant V’s). WZ cross sections currently have
a (non-luminosity) experimental uncertainty on the order of 10% or less, dominated by
the statistical error [103, 104]. The current theoretical uncertainty is on the order of 6%.
Both the experimental statistical and systematic errors will improve with more data, ne-
cessitating the need for a calculation of VVÕ to NNLO QCD + NLO EW (with V decays).
Recently the well-known NLO QCD corrections have been complemented by the NLO
EW corrections, first for stable W and Z bosons [105–107], and in the WW case also in-
cluding corrections to leptonic W-boson decays [108]. Moreover, the EW corrections to
on-shell VVÕ production have been implemented in the Herwig Monte Carlo generator in
an approximative way [109].
A thorough knowledge of the VV production cross section is needed, because of mea-
surements of triple gauge couplings and since that final state forms a background for
Higgs measurements in those channels. The non-luminosity errors for the VV final state
are of the order of 10% or less, with the theoretical uncertainties approximately half
that [103,104,110–113].

gg æ VV: An important piece of the VV cross section is that resulting from a gg initial state. For-
mally, the gg production sub-process is suppressed by a factor of –2

s with respect to the
dominant qq̄ sub-process, but still contributes 5–10% to the cross section for typical event-
selection cuts due to the large gluon flux at the LHC. As background to Higgs-boson stud-
ies, it can even be enhanced to the level of some 10% (see, e.g., discussions in Refs. [38–40]
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• There is a long agenda for precision 
physics at the LHC 

• Essential theoretical work which is 
needed to exploit to its maximum 
the multi-billion investment for the 
experiments 



The math of perturbation theory is full of challenges and 
surprises. 

Perturbative QCD is not only to be used…  
above all, it must be enjoyed! 



An alternative wish list

• Discover fully the mathematics of perturbative 
QCD.  

• Automate!


