Recent progress in perturbative QCD

Babis Anastasiou ETH Zurich

Phenomenology 2018 Symposium 7-9 May 2018, Pittsburgh

Outline

- Motivation
- General state of the art for perturbative QCD
- Examples for phenomenology
- Mathematical aspects
 - Functions in loop amplitudes
 - Reduction to master integrals
 - Numerical methods for loop amplitudes
- Wish lists?

What motivates the field of perturbative QCD?

Precision Phenomenology

Mathematical Challenge

LHC precision physics

A "Feynman diagram" of finding New Laws

Perturbative expansion

Perturbative expansion

Perturbative expansion

What has been achieved for the LHC?

2

Wbb+multijet production at NLO

- An example of what can be done
- Such results were unimaginable one decade ago
- NLO at LHC is fully automated: aMC@NLO, BlackHat, GoSam, Helac-NLO, OpenLoops, Recola, Sherpa, NJet, ...

Anger, Cordero, Ita, Sotnikov in Dec. 2017

Higgs boson transverse momentum spectrum at NNLO + N3LL

- Combines recent breakthrough computations at NNLO for H+1 jet
- and a profound knowledge of QCD factorisation in the soft and collinear regime.
- A ~6% precision for the transverse momentum spectrum (below the topquark threshold).

Chen, Gehrmann, Glover, Huss, Li, Neill, Schulze, Stewart, Zhu in May 2017

Associated Higgs production at NNLO merged with parton-shower

- The interplay of radiation processes described by partonshowers and fixed orders is getting better understood.
- The merging of these two approaches has been achieved through NNLO for simple (but crucial) processes.
- Important impact on phenomenology and a precise description of realistic processes.

Astill, Bizon, Re, Zanderighi in 2018

Higgs cross-section at N3LO

- First, as a deep expansion around threshold
- Now, in a closed complete form *(MistIberger in 2018)*
- Reflects a big progress since 2016 in our mathematical understanding (elliptic Feynman integrals)

CA, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger in 2016, Mistlberger in 2018

Complete Higgs crosssection at N3LO

40

0.04

- Threshold expansion was reliable for the gluon-gluon initial-state channel.
- Unreliable for quark-initiated channels."
- Now all integrals are known for the computation of alimination order
 2 -> 1 processes in N3LO massless QCD.

Could eventually bring theoretical predictions for Drell-Yan
 production to a precision of 0.1%

10

Truncation Order

0.04

Jet production at N3LO i n DIS

- A first of a kind achievement.
- fully differential cross-section at N3LO.
- It exploits NNLO computations and knowledge of an inclusive cross-section
- Used a "projection-to-Born method", first developed at NNLO (Cacciari, Dreyer, Karlberg, Salam, Zanderighi in 2015)

Currie, Gehrmann, Glover, Huss, Nietes in 2018

5-loop QCD β-function

Herzog, Ruijl, Uefa, Vermaseren, Vogt; also by Baikov, Chetyrkin, Kuehn (in 2017)

A day at work...

 $\int_0^1 \frac{dt}{t} \log(1-tx) \log(1-ty)$

 $=\sum_{n,m=1}^{\infty}\frac{x^ny^m}{nm(n+m)}$

x, y < 1

A day at work...

Guess:

 $\int_0^1 \frac{dt}{t} \log(1 - tx) \log(1 - ty)$ $= \sum_i c_i f_i \left(z_i(x, y) \right)$

- In the rhs, known functions
- with constant coefficients
- and a single argument

the ubiquitous polylogarithms...

 All one-loop amplitudes in 4d QFT can be written in terms of two functions only!

$$log(z)$$
 $Li_2(z) = -\int_0^1 \frac{\log(1-tx)}{t} = \sum_{n=1}^\infty \frac{x^n}{n^2}$

 More "polylogarithms" show up at two and higher loops... but not many

$$Li_3(z), S_{12}(z), Li_4(z), S_{22}(z), \ldots$$

A day at work...

Guess:

 $\int_{0}^{1} \frac{dt}{t} \log(1 - tx) \log(1 - ty)$ $= \sum_{i} c_{i} \operatorname{PolyLog}_{i} (z_{i}(x, y))$

- In the rhs, known polylogarithms
- with constant coefficients
- and a single argument which captures the singularities of the lhs.

polylogarithms have a nice behaviour under differentiation

$$\frac{d}{dz}Li_4(z) = \frac{1}{z}Li_3(z), \frac{d}{dz}Li_3(z) = \frac{1}{z}Li_2(z), \dots$$

• We can act on our ansatz with derivatives, simplifying both sides to simpler functions, all the way down to logarithms

$$\frac{d^{l+m}}{dx^l dy^m} \int_0^1 \frac{dt}{t} \log(1-tx) \log(1-ty) = \sum_i c_i \frac{d^{l+m}}{dx^l dy^m} \operatorname{PolyLog}_i \left(z_i(x,y) \right)$$

• We can then get easily a system of equations for the coefficients.

INTEGRATION _____ LINEAR ALGEBRA

Multiple polylogarithms formally

• There is a vector space of "multiple polylogarithms"

$$G(a_1, a_2, \dots, a_n, z) = \int_0^z \frac{dt}{t - a_1} G(a_2, \dots, a_n, t)$$

 Functional relations among polylogarithms or their derivatives, take the form of an algebra (multiplication rules)
 shuffle, stuffle, Hopf algebras

(Vermaseren; Gehrmann, Remiddi; Brown; Goncharov; Duhr; ...)

- Enormous breakthroughs in uncovering the rules (symbol, coproduct)
- Computing multidimensional Feynman integrals in terms of such polylogarithms is now "targeted" research with powerful theorems which restrict every step of the integration within the vector space of polylogarithms.

How to compute a multi loop amplitude

NUMERICAL EVALUATION

Fully known (analytically) 2-loop amplitudes for LHC processes

 parton+parton -> parton+parton	2 scales,
(~2000)	massless propagators
 parton+parton -> (H,V) +	<i>3 scales,</i>
parton (~2003)	massless propagators
 gluon-gluon -> Higgs via quarks (~2007) gluon-gluon -> Higgs via electroweak (~2006) 	<i>2 scales, massive propagators</i>
 parton-parton -> diboson	<i>4 scales,</i>
(~2014)	massless propagators

Fully known (analytically) 2-loop amplitudes for LHC processes

Where do polylogarithms come from?

- If an amplitude can be written in terms of polylogarithms exclusively, ...
- ... what does this imply for the basis of master integrals?
- Conjecture: There is a "canonical" basis of master integrals...
- ...which satisfies simple differential equations

$$\frac{\partial I_i}{\partial x_m} = (d-4)A^{(m)}_{ij}(\vec{x})I_j$$
 Johannes Henn

LINEAR ALGEBRA

IS SYMBOLIC COMPUTER ALGEBRA ALWAYS SIMPLE?

FUTURE APPLICATIONS

NUMERICAL EVALUATION

NUMERICAL REDUCTION

NUMERICAL EVALUATION

NLO:solved with numerical reduction to master integrals

- Reduction of amplitudes to master integrals has been understood physically very well, in multiple ways.
- One-loop amplitudes in gauge theories = (Tree-amplitudes in gauge-theories) and (Integrals in scalar field theories)

 C_{4}

 c_4

Ossola, Pittau, Papadopoulos; del Aguila, Pittau; Ellis, Giele, Kunszt; Ellis, Giele, Kunszt, Melnikov;

 $Tree \times Tree \times Tree \times Tree$

From NLO to NNLO

- A very beautiful structure of perturbation theory at NLO, where we can reduce the cross-section calculations to a few master integrals and treeamplitudes.
- It makes one dream that also higher orders NNLO, NNNLO, etc can be reduced to master integrals in a similarly physical and efficient eay.
- This dream is becoming real!

SCAZA NLD NNW × SCALAR

5-gluon amplitudes at leading colour

Badger,	Bronunm-Hansen,	Hartanto,	Peraro i	n 2017
---------	-----------------	-----------	----------	--------

	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$\widehat{A}^{(2),[0]}_{+++}$	12.5	27.7526	-23.773	-168.117	-175.207 ± 0.004
$P^{(2),[0]}_{+++}$	12.5	27.7526	-23.773	-168.116	
$\widehat{A}^{(2),[0]}_{-+-++}$	12.5	27.7526	2.5029	-35.8094	$69.661 {\pm} 0.009$
$P^{(2),[0]}_{-+-++}$	12.5	27.7526	2.5028	-35.8086	

Abreu, Cordero, Ita, Page, Zeng in 2017

$\mathcal{A}^{(2)}/\mathcal{A}^{(0)}$	ϵ^{-4}	ϵ^{-3}	ϵ^{-2}	ϵ^{-1}	ϵ^0
$(1^-, 2^-, 3^+, 4^+, 5^+)$	12.5000000	25.46246919	-1152.843107	-4072.938337	-3637.249567
$(1^-, 2^+, 3^-, 4^+, 5^+)$	12.5000000	25.46246919	-6.121629624	-90.22184215	-115.7836685

With unitarity based (semi-)numerical methods

ARE MASTER INTEGRALS SIMPLE?

ALGEBRA / Gauss elimination, unitarity methods EXPANSION around D=4 ISOLATION of UV/IR singularities

NUMERICAL UNITARITY METHODS

> NUMERICAL EVALUATION

Are always master integrals simple?

- The canonical basis of master integrals does not always exist...
- or, if it does, we do not know how to find it.
- Not all amplitudes can be written in terms of polylogarithms exclusively
- New functions (elliptic integrals) have emerged in two-loop amplitudes with massive propagators and in Higgs production at N3LO.
- Fast-paced progress in figuring out their systematics.

Adams, Bogner, Weinzierl

NUMERICAL EVALUATION OF MASTER INTEGRALS

Bypasses the problem of elliptic + other unknown functions that may emerge

Higgs pair production at NLO (2-loop)

- Two-loop amplitude is required.
- Calculated with numerical methods.
- A promising avenue when analytic methods fail for computing multi-scale amplitudes.

Borowka, Greiner, Heinrich, Jones, Kemer, Schienk, Schubert, Zirke

A PURELY NUMERICAL APPROACH?

Bypasses the problem of algebraically demanding reductions to master integrals Bypasses the problem of elliptic + other unknown functions that may emerge

Numerical approaches

- Direct numerical integrations of Feynman integrals are complicated due to IR/UV and thresholds.
- UV/IR need to be subtracted away before integration.
- Integrable singularities require a deformation of the contour of integration.

Soft+collinear+threshold singularities

Numerical approaches

Feynman parameter space

Momentum space

- IR/UV counterterms can be found algorithmically for arbitrary loops
- A sector-decomposition algorithm can disentangle overlapping singularities (*Binoth, Heinrich; ...*)
- Contour deformations can be produced algorithmically for arbitrary loops (*Nagy, Soper; ...*)

- IR/UV counterterms have been found only at one-loop (Nagy, Soper)
- Contour deformations are known at one-loop and beyond for processes with massless propagators. (Nagy, Soper; Becker, Weinzierl), But not efficient!
- A promising field of research with space for new ideas

RENDERING 2-LOOP FEYNMAN AMPITUDES FINITE

- Two-loop integrals become divergent when internal particles in the loop become collinear to external particles, or they are soft.
- Removing these singularities of two-loop is complicated.
- Singularities are many and highly entangled!

Nested subtractions

Ozan Erdogan, George Sterman

- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume
- Then, proceed to the next volume and repeat until there are no more singularities to remove.

$$R^{(n)} \gamma^{(n)} = \gamma^{(n)} + \sum_{N \in \mathcal{N}[\gamma^{(n)}]} \prod_{\rho \in N} (-t_{\rho}) \gamma^{(n)},$$

Nested subtractions

Ozan Erdogan, George Sterman

- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume
- Then, proceed to the next volume and repeat until there are no more singularities to remove.

$$R^{(n)} \gamma^{(n)} = \gamma^{(n)} + \sum_{N \in \mathcal{N}[\gamma^{(n)}]} \prod_{\rho \in N} (-t_{\rho}) \gamma^{(n)},$$

Nested Subtractions Ozan Erdogan, George Sterman

- Order the singular regions by their "volume"
- Subtract an approximation of the integrand in the smallest volume
- Then, proceed to the next volume and repeat until there are no more singularities to remove.
- Method should work at all orders in perturbation theory.
- This structure gives rise to factorisation into Jet, Soft and Hard functions for scattering amplitudes.

$$R^{(n)} \gamma^{(n)} = \gamma^{(n)} + \sum_{N \in \mathcal{N}[\gamma^{(n)}]} \prod_{\rho \in N} (-t_{\rho}) \gamma^{(n)},$$

Nested subtractions at 2-IOOPS CA, George Sterman

- Order of subtractions:
 - double-soft
 - soft-collinear
 - double-collinear
 - single-soft
 - single-collinear
- Approximations in singular regions do not need to be strict limits!
- Good approximations should not introduce ultraviolet divergences
- Good approximations should be easy to integrate exactly.

Example: Cross-box CA, George Sterman

 $F_{Xbox} = \frac{F_{Xbox}^{(2)}}{P_1 P_2 P_3 P_4 P_5 P_6 P_7} + F_{Xbox}^{(1s)} + F_{Xbox}^{(1c)},$

$$\begin{split} F_{Xbox}^{(2)} &= \left(1 - \frac{P_{13}}{s}\right)^2 + \frac{P_2}{tu} \left(P_2 + s - P_{13}\right) \\ &- \left(1 - \frac{P_1}{s}\right) \left(\frac{P_5}{t} + \frac{P_7}{u}\right) - \left(1 - \frac{P_3}{s}\right) \left(\frac{P_4}{u} + \frac{P_6}{t}\right) + \frac{P_2 P_{4567}}{tu} \\ &- \frac{P_3}{s} \left(\frac{P_7}{t} + \frac{P_5}{u}\right) - \frac{P_1}{s} \left(\frac{P_6}{u} + \frac{P_4}{t}\right) + \frac{(t - u)^2}{s^2} \frac{P_1 P_3}{tu}. \end{split}$$

$$F_{Xbox}^{(1c)} = -\frac{\frac{\mu^2}{\mu^2 - P_1}}{P_1 P_2 s(1 - x_1)} \left\{ \left[\frac{F_{Xbox}^{(2)}}{P_4 P_5 P_6 P_7} \right]_{k_1 = -x_1 p_1} - \left[\frac{F_{Xbox}^{(2)}}{P_4 P_5 P_6 P_7} \right]_{k_2 = 0} \right\}$$

$$-\frac{\frac{\mu^2}{\mu^2 - P_1}}{P_2 P_3 s(1 - x_3)} \left\{ \left[\frac{F_{Xbox}^{(2)}}{P_4 P_5 P_6 P_7} \right]_{k_3 = -x_2 p_2} - \left[\frac{F_{Xbox}^{(2)}}{P_4 P_5 P_6 P_7} \right]_{k_2 = 0} \right\}$$

$$-\frac{\frac{\mu^2}{\mu^2 - P_4}}{P_4 P_5} \left[\frac{F_{Xbox}^{(2)}}{P_1 P_2 P_3 P_6 P_7} \right]_{k_5 = -x_3 p_3} - \frac{\frac{\mu^2}{\mu^2 - P_6}}{P_6 P_7} \left[\frac{F_{Xbox}^{(2)}}{P_1 P_2 P_3 P_4 P_5} \right]_{k_5 = -x_4 p_4}$$

Les Houches wish-list

- There is a long agenda for precision physics at the LHC
- Essential theoretical work which is needed to exploit to its maximum the multi-billion investment for the experiments

Process	State of the Art	Desired
tt	$\sigma_{\rm tot}({\rm stable \ tops})$ @ NNLO QCD	$d\sigma$ (top decays)
	$d\sigma$ (top decays) @ NLO QCD	@ NNLO QCD + NLO EW
	$d\sigma$ (stable tops) @ NLO EW	
$\overline{t}\overline{t} + j(j)$	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)
		@ NNLO QCD + NLO EW
$\overline{t}\overline{t} + Z$	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays) @ NLO QCD
		+ NLO EW
single-top	$d\sigma$ (NWA top decays) @ NLO QCD	$d\sigma$ (NWA top decays)
		@ NNLO QCD + NLO EW
dijet	$d\sigma @ NNLO QCD (g only)$	$d\sigma$ @ NNLO QCD + NLO EW
	$d\sigma @ NLO EW (weak)$	
3j	$d\sigma$ @ NLO QCD	$d\sigma$ @ NNLO QCD + NLO EW
$\gamma + j$	$d\sigma$ @ NLO QCD	$d\sigma$ @ NNLO QCD + NLO EW
	$d\sigma @ NLO EW$	

Process	State of the Art	Desired
Η	$d\sigma @ NNLO QCD (expansion in 1/m_t)$	$d\sigma @ NNNLO QCD (infinite-m_t limit)$
	full m_t/m_b dependence @ NLO QCD	full $m_{\rm t}/m_{\rm b}$ dependence @ NNLO QCD
	and @ NLO EW	and @ NNLO QCD+EW
	NNLO+PS, in the $m_t \to \infty$ limit	NNLO+PS with finite top quark mass effects
H + j	$d\sigma @ NNLO QCD (g only)$	$d\sigma @ NNLO QCD (infinite-m_t limit)$
	and finite-quark-mass effects	and finite-quark-mass effects
	[@] LO QCD and LO EW	[®] NLO QCD and NLO EW
H + 2j	$\sigma_{\rm tot}({\rm VBF})$ @ NNLO(DIS) QCD	$d\sigma(VBF)$ @ NNLO QCD + NLO EW
	$d\sigma(VBF)$ @ NLO EW	
	$d\sigma(gg)$ @ NLO QCD (infinite- m_t limit)	$d\sigma(gg)$ @ NNLO QCD (infinite- m_t limit)
	and finite-quark-mass effects @ LO QCD	and finite-quark-mass effects
		[®] NLO QCD and NLO EW
H + V	$d\sigma$ @ NNLO QCD	with $H \to b\bar{b}$ @ same accuracy
	$d\sigma @ NLO EW$	$d\sigma(gg)$ @ NLO QCD
	$\sigma_{\rm tot}({\rm gg})$ @ NLO QCD (infinite- $m_{\rm t}$ limit)	with full $m_{\rm t}/m_{\rm b}$ dependence
tH and	$d\sigma$ (stable top) @ LO QCD	$d\sigma$ (top decays)
$\overline{\mathrm{t}}\mathrm{H}$		[®] NLO QCD and NLO EW
$t\bar{t}H$	$d\sigma$ (stable tops) @ NLO QCD	$d\sigma$ (top decays)
		@ NLO QCD and NLO EW
$\mathrm{gg} \to \mathrm{HH}$	$d\sigma @ NLO QCD (leading m_t dependence)$	$d\sigma$ @ NLO QCD
	d σ @ NNLO QCD (infinite- $m_{\rm t}$ limit)	with full $m_{\rm t}/m_{\rm b}$ dependence

Table 2: Wishlist part 2 – Jets and Heavy Quarks

Process	State of the Art	Desired
V	$d\sigma(lopt \ V \ docov) \otimes NNL \cap OCD$	$d\sigma(lopt \ V \ docov) \otimes NNNL \cap OCD$
v	d (lept. V decay) @ NNLO QOD	and @ NNLO OCD + EW
	$d\sigma(\text{lept. v decay}) \otimes \text{NLO EW}$	and \bigcirc NNLO QCD+EW
		NNLO+PS
V + j(j)	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay)
	$d\sigma$ (lept. V decay) @ NLO EW	@ NNLO QCD + NLO EW
VV'	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma$ (decaying off-shell V)
	$d\sigma$ (on-shell V decays) @ NLO EW	@ NNLO QCD + NLO EW
$gg \rightarrow VV$	$d\sigma(V \text{ decays}) @ LO QCD$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$
$V\gamma$	$d\sigma(V \text{ decay}) @ \text{NLO QCD}$	$d\sigma(V decay)$
	$d\sigma$ (PA, V decay) @ NLO EW	@ NNLO QCD + NLO EW
Vbb	$d\sigma$ (lept. V decay) @ NLO QCD	$d\sigma$ (lept. V decay) @ NNLO QCD
	massive b	+ NLO EW, massless b
$VV'\gamma$	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV'V''	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV' + j	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
VV' + jj	$d\sigma(V \text{ decays}) @ \text{NLO QCD}$	$d\sigma(V \text{ decays})$
		@ NLO QCD + NLO EW
$\gamma\gamma$	$d\sigma$ @ NNLO QCD + NLO EW	q_T resummation at NNLL matched to NNLO

Perturbative QCD is not only to be used... above all, it must be enjoyed!

The math of perturbation theory is full of challenges and surprises.

An alternative wish list

- Discover fully the mathematics of perturbative QCD.
- Automate!