Cosmology in the New Era
(Results from the Dark Energy Survey)

Tesla Jeltema
University of California, Santa Cruz

on behalf of the Dark Energy Survey Collaboration
Dark Energy

What is the cause of the observed cosmic acceleration?

– Is it dark energy or a modification of general relativity?

• If it is dark energy, is it constant (Λ) or evolving; what is the DE equation of state?
What can we probe?

Geometry: Distances, Expansion rate vs. Redshift

Expansion History

Growth of Density Perturbations

Require both to disentangle Dark Energy from Modified Gravity

Frieman, Turner, Huterer 2008
Dark Energy Probes

Diagram:

- Redshift space distortions
- Cosmic shear
- Galaxy clustering
- Galaxy clusters
- "Late-time structure"
- CMB
- BAO
- Supernovae
- "Expansion history"
Dark Energy Probes

Probed by Dark Energy Survey
The Dark Energy Survey

- Two multicolor surveys:
 - 300 million galaxies over 5000 deg2, grizY to 24th mag
 - 3000 supernovae (30 deg2)

- DECam on CTIO Blanco 4-m
 - DECam facility instrument

- Survey started August 2013
 - 5 of 5.5 seasons completed
 - Y1 (1500 sq. deg, 40% depth)
 - Y3 (5000 sq. deg, 50% depth)
The Dark Energy Survey

- Two multicolor surveys:
 - 300 million galaxies over 5000 deg2, grizY to 24th mag
 - 3000 supernovae (30 deg2)

- DECam on CTIO Blanco 4-m
 - DECam facility instrument

- Survey started August 2013
 - 5 of 5.5 seasons completed
 - Y1 (1500 sq. deg, 40% depth)
 - Y3 (5000 sq. deg, 50% depth)

Results today + Y3 SNe

DECam:
- 570 Megapixel Camera
- 3 deg2 FOV
DES Collaboration

~ 400 scientists
US support from DOE & NSF

Fermilab, UIUC/NCSA, University of Chicago, LBNL, NOAO, University of Michigan, University of Pennsylvania, Argonne National Lab, Ohio State University, Santa-Cruz/SLAC/Stanford, Texas A&M

UK Consortium:
UCL, Cambridge, Edinburgh, Nottingham, Portsmouth, Sussex

ETH Zurich
Ludwig-Maximilians Universität

Spain Consortium:
CIEMAT, IEEC, IFAE

Brazil Consortium

OzDES Consortium

CTIO
Survey Footprint

5000 deg2 footprint to be covered 900 seconds in griz and 450 sec in Y

10 SN fields, each observed every ~ 6 nights:
2 deep, 8 shallow
• **Galaxy Clusters**
 • Tens of thousands of clusters to $z \sim 1$

• **Weak Lensing**
 • Shapes of 200 million galaxies

• **Galaxy Clustering**
 • 300 million galaxies to $z \sim 1$

• **Supernovae**
 • 3000 well-sampled SNe Ia to $z \sim 1$

• **Strong Lensing**
 • \sim 30 QSO lens time delays
 • Arcs with multiple source redshifts

• **Cross-correlations**
 • Galaxies, shear, CMB

\[w(a) = w_0 + w_a (1 - a(t)) \]
DES Dark Energy Probes

- **Galaxy Clusters**
 - Tens of thousands of clusters to z~1
- **Weak Lensing**
 - Shapes of 200 million galaxies
- **Galaxy Clustering**
 - 300 million galaxies to z~1
- **Supernovae**
 - 3000 well-sampled SNe Ia to z~1
- **Strong Lensing**
 - ~ 30 QSO lens time delays
 - Arcs with multiple source redshifts
- **Cross-correlations**
 - Galaxies, shear, CMB

\[w(a) = w_0 + w_a (1 - a(t)) \]
Galaxy Clustering

Galaxies form in dark matter overdensities.
Galaxy positions trace matter distribution

→ Construct power spectrum (or real-space correlation function) from positions

(Limited by an unknown galaxy bias relative to dark matter).

C.M. Baugh
Light from distant galaxies passes through the same structure → Change in ellipticities correlated

- Measure galaxy shapes
- Measure correlation of shapes of pairs on galaxies.
DES Year 1
~1500 deg2

Galaxy distribution

Weak lensing map of projected mass from 26 million galaxies

Chang+ arXiv:1708.01535
Cross Correlations

Combination jointly constrains astrophysical and systematic parameters

Dark matter

Galaxy clustering

Cosmic shear

3x2pt

Galaxy-galaxy lensing

Elvin-Poole+ 1708.01536

Troxel+ 1708.01538

Prat, Sanchez+ 1708.01537
Double everything:
- Two shape measurement codes
- Two photo-z codes
- Two analysis pipelines

Similar constraining power to Planck on matter density and amplitude (1-2σ tension)

\[\Omega_m = 0.301^{+0.006}_{-0.008}, \quad \sum m_\nu < 0.29 \text{ eV} \]
\[S_8 = 0.799^{+0.014}_{-0.009}, \quad w = -1.00^{+0.04}_{-0.05} \]

wCDM, DES+Planck+BAO+SNe

DES collaboration 2017, arXiv:1708.01530
Cosmology with Clusters

Growth rate depends on balance between gravity and expansion rate

Clusters are rare overdensities
Cosmology with Clusters

What we can predict:
(# of massive halos)/volume at z

What we see:
Galaxies in survey solid angle at photometric z
Cosmology with Clusters

What we can predict:
(# of massive halos)/volume at z

What we see:
Galaxies in survey solid angle at photometric z

Richness (# of galaxies) \rightarrow cluster mass
Solid angle \rightarrow volume (cosmology dependent)
Counting Clusters

Measure number of clusters (bins of richness and redshift)
Counting Clusters

Measure number of clusters (bins of richness and redshift)

Step 1: Find clusters
Overdensity of galaxies with the same color
redMaPPer (Rykoff+ 2014)

Cluster red sequence
Gladders+ 1998
Counting Clusters

Step 2: Determine position, redshift, and richness
Counting Clusters

Step 2: Determine position, redshift, and richness

Color of red sequence \rightarrow redshift (accurate to $\sim1\%$, McClintock+ 2018)
Counting Clusters

Step 2: Determine position, redshift, and richness

Color of red sequence \rightarrow redshift (accurate to $\sim 1\%$, McClintock+ 2018)

Candidate central galaxy \rightarrow position
Counting Clusters

Step 2: Determine position, redshift, and richness

Color of red sequence \rightarrow redshift (accurate to \sim1%, McClintock+ 2018)

Candidate central galaxy \rightarrow position

Assign galaxies a membership probability

$$\lambda_{RM} = \Sigma p_{\text{mem}} \rightarrow \text{richness}$$
Mean mass-richness relation – stacked weak lensing

<table>
<thead>
<tr>
<th>Source of systematic</th>
<th>SV Amplitude uncertainty</th>
<th>Y1 Amplitude Uncert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear measurement</td>
<td>4%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Photometric redshifts</td>
<td>3%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Modeling systematics</td>
<td>2%</td>
<td>0.73%</td>
</tr>
<tr>
<td>Cluster triaxiality</td>
<td>2%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Line-of-sight projections</td>
<td>2%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Membership dilution + miscentering</td>
<td>≤ 1%</td>
<td>0.78%</td>
</tr>
<tr>
<td>Total Systematics</td>
<td>6.1%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Total Statistical</td>
<td>9.4%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Total</td>
<td>11.2%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
Mass Calibration – Scatter

Mass-richness scatter – X-ray and SZ observations

Hollowood+ in prep, Farahi+ in prep.

Scatter of 0.25 ± 0.13
Systematics

Miscentering: Zhang+ in prep.
• reduces lensing shear
• reduces observed richness
Calibrate with X-ray data

Projection: Costanzi+ 2018
• changes observed richness
Calibrate $p(\lambda_{\text{obs}}|\lambda_{\text{true}})$ with simulations

Cluster member contamination: Varga+ in prep.
• Reduces shear by adding unsheared galaxies
Calibrate boost using $p(z)$ distribution
Y1 Cluster Cosmology - Blinded

Coming soon: DES Key Paper on Year 1 cluster cosmology

Blinded results show constraining power equals combined 3x2pt

* blinded means position of contours unknown. Here they are artificially shifted to overlay 3x2pt.*
Supernovae

Type Ia Supernovae: Standardizable candles

DES supernova survey:

- 10 SNe fields visited every few days
- Spectroscopic follow-up by OzDES using AAT
Supernovae – DES Year 3

206 spectroscopically confirmed SNe Ia, $0.08 < z < 0.85$

+ 128 low-z external

DES collaboration, in prep.
Supernovae – DES Year 3

206 spectroscopically confirmed SNe Ia, $0.08 < z < 0.85$

+ 128 low-z external

DES collaboration, in prep.
Supernovae – DES Year 3

206 spectroscopically confirmed SNe Ia, $0.08 < z < 0.85$

+ 128 low-z external

DES collaboration, in prep.
Supernovae – DES Y3 Cosmology

\[w = -1.002 \pm 0.057 \]

\[\sigma_w = 0.041(STAT), 0.040(SYS) \]

\[\Omega_M = 0.314 \pm 0.017 \]

(wCDM, DES Y3 SNe+CMB)

OmegaM: 0.314 +/- 0.017
w: -1.002 +/- 0.057

DES collaboration, in prep.

D. Brout, AAS talk
Coming Soon

CMB map from Planck or SPT
Structure associated to DES galaxies

5x2pt (+ DES clusters + DES SNe)

→ DES Year 3 triples area → more than double exposure by DES Year 5

DES forecast (T. Eifler, E. Krause)
Summary

- DES gives precise constraints on late-time structure, starting to rival CMB.

- Wide range of probes (early and late time, geometric and structure growth) agree on ΛCDM.

- The future is bright!
Thank you!
Looking for more than dark energy: Discovery* of GW170817 counterpart

25 deg²
LIGO/VIRGO positional constraint (90 % C.L.) >90% covered by DECam

Soares-Santos, ... DG+ ArXiv:1710.05459

10.5 hours post-merger among 1500 candidates

GW170817
DECam observation (0.5–1.5 days post merger)

GW170817
DECam observation (>14 days post merger)

Cosmology with Clusters

survey area covers less volume

Constant Ω_{DE} with increasing w

structure must form earlier to be in place before DE domination