

The Standard Model and Particle Physics

Mikhail Shaposhnikov

The Standard Model in now complete: the last particle - Higgs boson, predicted by the SM, has been found

- The Standard Model in now complete: the last particle Higgs boson, predicted by the SM, has been found
- No significant deviations from the SM have been observed

- The Standard Model in now complete: the last particle Higgs boson, predicted by the SM, has been found
- No significant deviations from the SM have been observed
- The masses of the top quark and of the Higgs boson, the Nature has chosen, make the SM ^a self-consistent effective field theory all the way up to the quantumgravity Planck scale $\boldsymbol{M_P}$.

- The Standard Model in now complete: the last particle Higgs boson, predicted by the SM, has been found
- No significant deviations from the SM have been observed
- The masses of the top quark and of the Higgs boson, the Nature has chosen, make the SM ^a self-consistent effective field theory all the way up to the quantumgravity Planck scale $\boldsymbol{M_P}$.
- $M_H < 175$ GeV : SM is a weakly coupled theory up to Planck energies
- $M_H > 111$ GeV: Our EW vacuum is stable or metastable with a lifetime greatly averaging the Universe and exceeding the Universe age. 129

Pittsburgh, May 9, 2018 – p. 3

LO

140

 $135\,$

Great features of the SM in cosmology

3 light neutrino species: well consistent with Big BangNucleosynthesis, CMB and large scale structure of the Universe(Planck: n_ν $_{\nu} = 3.15 \pm 0.23$).

Great features of the SM in cosmology

The rate of B non-conservation exactly as we would like it to have forbaryogenesis!

These reactions are in thermal equilibrium for

 $100~\text{GeV} \sim T_c < T < (\alpha_W)^5$ $M_{Pl} \sim$ $\sim 10^{12}~{\rm GeV}$

Pittsburgh, May 9, 2018 – p. 5

Great features of the SM in cosmology

Presence of the fundamental scalar field – Higgs boson, whichcan play ^a role of the inflaton and make the Universe flat, homogeneous and isotropic and produce quantum fluctuationsnecessary for structure formation. Hot Big Bang due to Higgs fieldoscillations! Higgs-gravity coupling : ξH^2 $^{\prime\prime}R$.

Prediction of Higgs inflation: $\boldsymbol{n_s}$ $s = 0.97, r = 0.003$

unnatural <a>

[uhn-nach-er-uh I, -nach-ruh I]

Spell Syllables

Synonyms Examples **Word Origin**

See more synonyms on Thesaurus.com

adjective

1. contrary to the laws or course of nature.

unnatural <a>

[uhn-nach-er-uh I, -nach-ruh I]

Spell Syllables

Synonyms Examples **Word Origin** See more synonyms on Thesaurus.com

adjective

1. contrary to the laws or course of nature.

whereas the theories with lowenergy SUSY, composite Higgsor large extra dimensions arecalled "<mark>natural</mark>"

unnatural ^{of}

[uhn-nach-er-uh I, -nach-ruh I]

Spell Syllables

Synonyms Examples **Word Origin** See more synonyms on Thesaurus.com

adjective

1. contrary to the laws or course of nature.

whereas the theories with lowenergy SUSY, composite Higgsor large extra dimensions arecalled "<mark>natural</mark>"

natural ^{a)}

[nach-er-uh I, nach-ruh I] Spell **Syllables**

Examples Word Origin Synonyms See more synonyms on Thesaurus.com

adjective

1. existing in or formed by nature (opposed to artificial): a natural bridge.

2. based on the state of things in nature; constituted by nature:

unnatural ^{of}

[uhn-nach-er-uh I, -nach-ruh I]

Spell Syllables

Synonyms Examples **Word Origin** See more synonyms on Thesaurus.com

adjective

1. contrary to the laws or course of nature.

whereas the theories with lowenergy SUSY, composite Higgsor large extra dimensions arecalled "<mark>natural</mark>"

natural ^{a)}

 $[nach-er-uh, nach-ruh]$ Spell **Syllables**

Examples Word Origin Synonyms See more synonyms on Thesaurus.com

adjective

1. existing in or formed by nature (opposed to artificial): a natural bridge.

2. based on the state of things in nature; constituted by nature:

This is unfair to "<mark>unnatural</mark>" SM as it describes the Nature better than "<mark>natural</mark>" theories...

Physics at the electroweak scale or right above it should be organised in such ^a way that quadratic divergencies in the Higgs boson mass areeliminated, to remove sensitivity of $\boldsymbol{m_H}$ $_H$ to physics at very high energy scale Λ (e.g. GUT).

Physics at the electroweak scale or right above it should be organised in such ^a way that quadratic divergencies in the Higgs boson mass areeliminated, to remove sensitivity of $\boldsymbol{m_H}$ $_H$ to physics at very high energy scale Λ (e.g. GUT).

If this does not happen, the theory is called unnatural and fine-tuned

Physics at the electroweak scale or right above it should be organised in such ^a way that quadratic divergencies in the Higgs boson mass areeliminated, to remove sensitivity of $\boldsymbol{m_H}$ $_H$ to physics at very high energy scale Λ (e.g. GUT).

If this does not happen, the theory is called unnatural and fine-tuned

$$
\delta m_H^2 = \frac{1}{\sqrt{2}} \left(\frac{1}{2} \right)^{1/2} + \frac{1}{2} \left(\frac{1}{2} \right)^{1
$$

The original source of the naturalness requirement: hierarchy problemin Grand Unified theories

PHYSICAL REVIEW D

VOLUME 14, NUMBER 6

15 SEPTEMBER 1976

Gauge-symmetry hierarchies*

Eldad Gildener

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 15 June 1976)

It is shown that one cannot artifically establish a gauge hierarchy of any desired magnitude by arbitrarily adjusting the scalar-field parameters in the Lagrangian and using the tree approximation to the potential; radiative corrections will set an upper bound on such a hierarchy. If the gauge coupling constant is approximately equal to the electromagnetic coupling constant, the upper bound on the ratio of vector-meson masses is of the order of $\alpha^{-1/2}$, independent of the sclar-field masses and their self-couplings. In particular, the usual assumption that large scalar-field mass ratios in the Lagrangian can induce large vector-meson mass ratios is false. A thus far unsuccessful search for natural gauge hierarchies is briefly discussed. It is shown that if such a hierarchy occurred, it would have an upper bound of the order of $\alpha^{-1/2}$.

Extra GUT particles beyond the SM – leptoquarks (vector and scalar)must be very heavy, $M_X>10^{15}$ GeV

- this is required by the gauge coupling unification \bullet
- this is needed for stability of matter, proton lifetime $\tau_p> 10^{34}$ \bullet years

$$
Hierarchy: \left(\frac{M_X}{M_W}\right)^2 \simeq 10^{28}
$$

Two faces of hierarchy

- Ad hoc tuning between the parameters (masses and couplings ^ofdifferent multiplets) at the tree level with an accuracy of 26 ordersof magnitude
- Stability of the Higgs mass against radiative corrections Gildener, '76

 δm^2 $\alpha_H^2 \simeq \alpha_G^n$ $\frac{n}{GUT}M_{X}^{2}$ \boldsymbol{X}

Tuning is needed up to 14th or<mark>der</mark> of perturbation theory!

Proposed solutions

Stability of EW scale – requirement of "naturalness": absence of quadratic divergencies in the Higgs mass

- Low energy SUSY: compensation of bosonic loops by fermionicloops
- Composite Higgs boson new strong interactions
- Large extra dimensions

All require new physics right above theFermi scale, which was expected toshow up at the LHC

The source of the hierarchy problem - heavy particles.

The source of the hierarchy problem - heavy particles. No heavyparticles - no large contributions - no fine tuning

The source of the hierarchy problem - heavy particles. No heavyparticles - no large contributions - no fine tuning

UV physics (gravity?) should be organised in such ^a way that the Fermi scale is much smaller than the Planck $\operatorname{\mathsf{scale}}\nolimits.$ (M_P is not a mass of any particle!)

The source of the hierarchy problem - heavy particles. No heavyparticles - no large contributions - no fine tuning

UV physics (gravity?) should be organised in such ^a way that the Fermi scale is much smaller than the Planck $\operatorname{\mathsf{scale}}\nolimits.$ (M_P is not a mass of any particle!)

No new physics?

Last point cannot be true: neutrino physics and cosmology tell us that theSM is not the final theory

Solid experimental and observational evidence for new physics :

- Observations of neutrino oscillations (in the original SM neutrinos are massless and do not oscillate)
- Evidence for Dark Matter (SM does not have particle physicscandidate for DM).
- No antimatter in the Universe in amounts comparable with matter(baryon asymmetry of the Universe is too small in the SM: CKMmixing is not enough, and there is no EW phase transition withexperimental value of the Higgs mass – no large departures fromthermal equilibrium)

Contradictions to high energyexperiments?

Anomalous muon magneticdipole moment, $\boldsymbol{3.6\sigma}$ deviation from the SM. Will be checked by muon $g-2$ experiment at FNAL.

Violation of lepton flavouruniversalityWill be checked by futureflavour experiments

Marginal evidence (l<mark>ess than $2\sigma)$ </mark> for the SM vacuum metastability given uncertainties in relation between Monte-Carlo top mass andthe top quark Yukawa coupling

Bednyakov et al, '15

Vacuum is unstable at 1.3σ

Theoretical prejudice for new physics beyond the Standard Model: WHY questions

- **SM** contains 19 free parameters, none of them is theoretically predicted, they are all taken from experiment. Why do they havethe values we observe? Why $m_e \ll m_t$? ...
- Cosmological constant problem: Why $\epsilon_{vac}/M_{Pl}^4 \lll 1?$
- Hierarchy problem: Why $M_W/M_{Pl} \ll 1?$
- Strong CP-problem: Why $\theta_{QCD} \ll 1$? \bullet
- ...

Where is new physics?

Only at the Planck scale?

Does not work: neutrino masses from five-dimensional operator

$$
\frac{1}{M_P} A_{\alpha\beta}\left(\bar{L}_\alpha\tilde{\phi}\right)\left(\phi^\dagger L^c_\beta\right)
$$

suppressed by the Planck scale are too small, $m_\nu < 10^{-5}$ eV.

Below the Planck scale, but where?

- Neutrino masses and oscillations: the masses of right-handedsee-saw neutrinos can vary from $\mathcal{O}(1)$ eV to $\mathcal{O}(10^{15})$ GeV
- Dark matter, absent in the SM: the masses of DM particles can be \bullet as small as $\mathcal{O}(10^{-22}$ \sim 2) eV (super-light scalar fields) or as large as $\mathcal{O}(10^{20})$ GeV (wimpzillas, Q-balls).
- Baryogenesis, absent in the SM: the masses of new particles, responsible for baryogenesis (e.g. right-handed neutrinos), canbe as small as $\mathcal{O}(10)$ MeV or as large as $\mathcal{O}(10^{15})$ GeV

Below the Planck scale, but where?

- Neutrino masses and oscillations: the masses of right-handedsee-saw neutrinos can vary from $\mathcal{O}(1)$ eV to $\mathcal{O}(10^{15})$ GeV
- Dark matter, absent in the SM: the masses of DM particles can be \bullet as small as $\mathcal{O}(10^{-22}$ \sim 2) eV (super-light scalar fields) or as large as $\mathcal{O}(10^{20})$ GeV (wimpzillas, Q-balls).
- Baryogenesis, absent in the SM: the masses of new particles, responsible for baryogenesis (e.g. right-handed neutrinos), canbe as small as $\mathcal{O}(10)$ MeV or as large as $\mathcal{O}(10^{15})$ GeV

Paradigm: no heavy particles to evade the instability of the Higgs mass against radiative corrections

Below the Planck scale, but where?

- Neutrino masses and oscillations: the masses of right-handedsee-saw neutrinos can vary from $\mathcal{O}(1)$ eV to $\mathcal{O}(10^{15})$ GeV
- Dark matter, absent in the SM: the masses of DM particles can beas small as $\mathcal{O}(10^{-22}$ \sim 2) eV (super-light scalar fields) or as large as $\mathcal{O}(10^{20})$ GeV (wimpzillas, Q-balls).
- Baryogenesis, absent in the SM: the masses of new particles, responsible for baryogenesis (e.g. right-handed neutrinos), canbe as small as $\mathcal{O}(10)$ MeV or as large as $\mathcal{O}(10^{15})$ GeV

Paradigm: no heavy particles to evade the instability of the Higgs mass against radiative corrections

Challenge: all the experimental BSMproblems should be explained by light particles!

Example of "complete" theory: the ν MSM

 ν MSM \equiv Neutrino minimal Standard Model

 \equiv Minimal low scale see-saw model with 3 singlet fermions

Role of the Higgs boson: break the symmetry and inflate the Universe Role of $\boldsymbol{N_1}$ with mass in keV region: dark matter.

Role of $\boldsymbol{N_2},~\boldsymbol{N_3}$ with mass in 100 MeV – GeV region: "give" masses to neutrinos and produce baryon asymmetry of the Universe. Pittsburgh, May 9, 2018 – p. 21

Parameter counting: the ν MSM

Most general renormalizable Lagrangian

$$
L_{\nu MSM} = L_{SM} + \bar{N}_I i \partial_\mu \gamma^\mu N_I - F_{\alpha I} \bar{L}_{\alpha} N_I \Phi - \frac{M_I}{2} \bar{N}_I^c N_I + h.c.,
$$

Extra coupling constants:

 $\bf 3$ Majorana masses of new neutral fermions $\bm N_{\bm i},$

<mark>15</mark> new Yukawa couplings in the leptonic sector

(3 Dirac neutrino masses, 6 mixing angles and 6 CP-violating phases), <mark>18</mark> new parameters in total. The number of parameters is doubled in compari-

son with SM!

Cosmology and phenomenologyof ^a minimal model

Neutrino masses and Yukawacouplings

Baryon asymmetry

Creation of baryon asymmetry - ^a complicated process involvingcreation of <mark>HNLs</mark> in the early universe and their coherent CP-violating oscillations, interaction of <mark>HNLs</mark> with SM fermions, sphaleron processes with lepton and baryon number non-conservationAkhmedov, Rubakov, Smirnov; Asaka, MS

Resummation, hard thermal loops, Landau-Pomeranchuk-Migdal effect, etc. Ghiglieri, Laine. How to describe these processes is still underdebate, but the consensus is that <mark>it works</mark> and is testable.

Baryon asymmetry: $\textrm{HNLs}~N_{2,3}$

Constraints on U^2 coming from the baryon asymmetry of the Universe, from the see-saw formula, from the big bang nucleosynthesis andexperimental searches. Left panel - normal hierarchy, right panel inverted hierarchy (Canetti, Drewes, Frossard, MS '12). Similar results: recent works by Abada, Arcadia, Domcke, Lucente ' 15, Hernández, Kekic, J. López-Pavón, Racker, J. Salvado '16,Drewes, Garbrech, Guetera, Klarić '16, Hambye, Teresi '17

Experimental challenges:

- HNL production and decays are highly suppressed dedicatedexperiments are needed:
	- Mass below ~5 GeV Intensity frontier, CERN SPS: NA62 in beam dump mode, SHiP
	- Mass below ~5 GeV Energy frontier, LHC: MATHUSLA \bullet
	- Mass above \sim 5 GeV FCC in e^+e^- mode in Z-peak, LHC

Generic purpose experiments to search for all sorts of relatively light dark sector particles (dark photons, hidden scalars, etc).

FCC at 10^{13} Z^0 and decay length 0.01-500 cm

Dark Matter candidate: N_1

DM particle is not stable. Maindecay mode $N_1\;\rightarrow\;3\nu$ is not observable.Subdominant radiative decaychannel: $N\to\nu\gamma$. Photon energy:

$$
E_\gamma = \frac{M}{2}
$$

Radiative decay width:

$$
\Gamma_{\rm rad} = \frac{9\,\alpha_{\rm EM}\,G_F^2}{256\cdot 4\pi^4}\,\sin^2(2\theta)\,M_s^5
$$

 $\boldsymbol{N_1}$ decays radiatively, $\boldsymbol{N_1}$ \rightarrow $\gamma\nu$, producing a narrow line which can be detected by X-ray telescopes!

Status of sterile neutrino dark matter $\boldsymbol{N_1}$

Decaying DM: $N_1 \rightarrow \gamma \nu$

3.5 keV line: E. Bulbul et al, Boyarsky et al

1706.03118, Baur et al. 1705.01837 Abazajian

Future of decaying dark matter searches in X-rays

Another Hitomi (around 2020)

It is planned to send a replacement of the Hitomi satellite

Microcalorimeter on sounding rocket (2019)

- Flying time $\sim 10^2$ sec. Pointed at GC only
- Can determine line's position and width

Athena+ (around 2028)

- Large ESA X-ray mission with X-ray spectrometer $(X-IFU)$
- Very large collecting area $(10\times$ that of XMM)
- Super spectral resolution

Spaceflight Now

JAXA, NASA approve replacement mission for Japan's failed Hitomi X-ray astronomy satellite. spaceflightnow.com/2017/07/06/jax

The Standard Model is in great shape.

The Standard Model is in great shape.

Perhaps, its success is telling us that NewPhysics is hiding below the Fermi scale?

The Standard Model is in great shape.

Perhaps, its success is telling us that NewPhysics is hiding below the Fermi scale?

The dedicated searches (NA62, SHiP, MATHUSLA, FCC) for new veryweakly interacting particles with masses below the Fermi scale, can

- find particles that lead to neutrino masses and oscillations
- find particles that lead to baryon asymmetry of the Universe
- shed new light on the properties of dark matter
- lead to construction of new Standard Model

The Standard Model is in great shape.

Perhaps, its success is telling us that NewPhysics is hiding below the Fermi scale?

The dedicated searches (NA62, SHiP, MATHUSLA, FCC) for new veryweakly interacting particles with masses below the Fermi scale, can

- find particles that lead to neutrino masses and oscillations
- find particles that lead to baryon asymmetry of the Universe
- shed new light on the properties of dark matter
- lead to construction of new Standard Model

This opportunity should not be missed!

Backup slides

NA62

SHiP Search for Hidden Particles

MATHUSLA

MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles

An external LLP detector for the HL- or HE-LHC

