

Searches for HH production at CMS

Petar Maksimovic, Johns Hopkins on behalf of the CMS collaboration

PHENO 2018

The layout of this talk

HH in the SM

- Measurement of Higgs boson self-coupling
 a fundamental test of SM!
- SM predicts extremely small cross-section for HH prod.

HHH probes the shape of the Higgs potential!

HH in BSM (non-resonant)

- BSM: dimension 6 operators. Parameterize using EFT approach:
 - modifications to $K_{\lambda} = \lambda / \lambda_{SM}$ and $K_t = y_t / y_{t,SM}$
 - three new interactions: C₂, C_{2g}, C_g

HH in BSM (non-resonant)

HH in BSM (resonant)

- HH resonances from warped extra dimensions models:
- Radion (spin = 0)
 - gg production
 - higher cross-section

- First KK excitation of the graviton (spin = 2)
 - gg production

(resolved 4b channel)

(boosted 4b = higher masses)

Complementarity of HH channels

Petar Maksimovic, Johns Hopkins

$\mathbf{H}(\gamma\gamma)\mathbf{H}(b\overline{b})$

CMS-HIG-17-008

- 2 photons, 2 b-jets
- nonresonant + resonant
- b-jet energy regression to improve $m_{b\bar{b}}$ resolution

- 2D fit of $m_{b\overline{b}}$ vs. $m_{\gamma\gamma}$
- main background: γ+jets
 - smooth 2D surface in the fit
- SM single Higgs (from MC)
 - ridge in the fit

$\mathbf{H}(\gamma\gamma)\mathbf{H}(b\overline{b})$

• Likelihood: joint probability $m_{\gamma\gamma}$ vs. $m_{b\overline{b}}$

obs. (exp) limit corresponds to
 ~ 19 (16) x SM

- anomalous k_{λ} coupling probed

CMS-HIG-17-008

$\mathbf{H}(\tau\tau)\mathbf{H}(b\overline{b})$

- $\tau_h \tau_\mu + \tau_h \tau_e + \tau_h \tau_h$ (88%)
- 2 jets (resolved) or 1 large-R jet (boosted)
- Likelihood fit to estimate $\,m_{ au au}$ (despite $p_{
 m T}^{
 m miss}$)
- $m_{bar{b}}, m_{ au au}$ compatible with m_H
- Events categorized by N_b
- Main backgrounds:
 - $t\overline{t}$, Z/ γ *+jets (from MC)
 - multijet (from data)
- BDT to reject $t\bar{t}$ in $au_h au_\mu+ au_h au_e$
 - based on angular separation of leptons and visible mass
- m_{T2} used to extract the signal

Phys. Lett. B 778 (2018) 101

$\mathbf{H}(\tau\tau)\mathbf{H}(b\bar{b})$

Obs. (exp.) limit
 ~ 30 (25) x SM

- Anomalous k_{λ} and k_t couplings tested
 - Sensitive to sign of k_t

13

$\mathrm{H}(VV^* \to \ell \nu \ell \nu) \mathrm{H}(b\bar{b})$

JHEP 01 (2018) 054

- 2 OS leptons
 - (ee, µµ and eµ+µe)
- 2 b-jets
- Main backgrounds:
 - $t\overline{t}$ (from MC)
 - Z+jets (from 0 b-jets data)
- DNN to separate signal from $t\overline{t}$
 - Parametrized as function of k_λ and k_t
- m_{jj} and DNN classifier used to categorize events

$\mathrm{H}(VV^* \to \ell \nu \ell \nu) \mathrm{H}(b\bar{b})$

- The final DNN discriminant is used in three $m_{b\overline{b}}$ regions
- Obs. (exp.) limit
 ~ 79 (89) x SM
- Anomalous k_{λ} and k_t couplings tested

JHEP 01 (2018) 054

BSM limits for $b\overline{b}\gamma\gamma$ and $b\overline{b}\tau\tau$

$\mathbf{X} \to \mathbf{H}(b\overline{b})\mathbf{H}(b\overline{b}) \text{ "resolved"}$

- 4 b-tagged jets, kinematic fit
- Main background: multijet (QCD + ttbar) (from data)

HIG-17-009

 $X \rightarrow H(b\overline{b})H(b\overline{b})$ "resolved"

- Bulk graviton limit
- Discontinuity where two strategies change

HIG-17-009

AK8 jet double-b tagger discriminator

${\rm X} \rightarrow {\rm H}(b\overline{b}) {\rm H}(b\overline{b})$ "boosted"

• Improve access to large $m_{\rm HH}$

PLB 781 (2018) 244

$\mathbf{X} \to \mathbf{H}(b\overline{b})\mathbf{H}(b\overline{b})$ "boosted"

PLB 781 (2018) 244

• Improved limits for high masses (esp. radion)

Conclusions

- CMS has a broad (and still expanding) program of searches for HH production
 - both resonant and non-resonant
- New searches:
 - boosted channels, non-resonant...
- Keep improving and adding new channels
- Try to reach sensitivity of SM HH production
 - but keep an eye on BSM as well!
- Still a lot of Run 2 data to analyze!

BACKUP MATERIAL

$\mathbf{H}(\gamma\gamma)\mathbf{H}(b\overline{b})$

CMS-HIG-17-008

- 2 photons, 100< $m_{\gamma\gamma}$ <180 GeV
- 2 b jets, 70< $m_{b\overline{b}}$ <190 GeV
- b-jet energy regression to improve $m_{b\overline{b}}$ resolution

- Mx and BDT (including angular correlations) used to categorize events
- γ +jets (from data)
- SM single Higgs (from MC)

$\mathbf{H}(\gamma\gamma)\mathbf{H}(b\bar{b})$

CMS-HIG-17-008

Sources of Systematical Uncertainties	Туре	Value			
General uncertainties					
Integrated luminosity	Normalization	2.5%			
Photon related uncertainties					
Photon energy scale $\left(\frac{\Delta M(\gamma\gamma)}{M(\gamma\gamma)}\right)$	Shape	1.0%			
Photon energy resolution $(\frac{\Delta\sigma_{\gamma\gamma}}{\sigma_{\gamma\gamma}})$	Shape	1.0%			
Diphoton selection (with trigger uncertainties and PES)	Normalization	2.0%			
Photon Identification	Normalization	1.0%			
Jet related uncertainties					
Jet energy scale $\left(\frac{\Delta M(jj)}{M(jj)}\right)$	Shape	1.0%			
Jet energy resolution $(\frac{\Delta \sigma_{jj}}{\sigma_{ij}})$	Shape	5.0%			
Dijet selection (JES)	Normalization	0.5%			
Nonresonant specific uncertainties					
$\tilde{M}_{\rm X}$ Classification	Normalization	0.5%			
Classification MVA (high purity)	Normalization	5%			
Classification MVA (medium purity)	Normalization	2.0%			

Phys. Lett. B 778 (2018) 101

29

Systematic uncertainty	Value	Processes
Luminosity	2.5%	all but multijet, $Z/\gamma^* \rightarrow \ell \ell$
Lepton trigger and reconstruction	2–6%	all but multijet
au energy scale	3–10%	all but multijet
Jet energy scale	2–4%	all but multijet
b tag efficiency	2-6%	all but multijet
Background cross section	1-10%	all but multijet, $\mathrm{Z}/\gamma^* o \ell \ell$
$Z/\gamma^* \rightarrow \ell\ell$ SF uncertainty	0.1–2.5%	$\mathrm{Z}/\gamma^* ightarrow \ell\ell$
Multijet normalization	5-30%	multijet
Scale unc.	+4.3%/-6.0%	signals
Theory unc.	5.9%	signals

 $\mathbf{H}(\tau\tau)\mathbf{H}(b\bar{b})$

$\mathrm{H}(VV^* \to \ell \nu \ell \nu) \mathrm{H}(b\bar{b})$

JHEP 01 (2018) 054

Source	Background yield variation	Signal yield variation		
Electron identification and isolation	2.0-3.2%	1.9-2.9%		
Jet b tagging (heavy-flavour jets)	2.5%	2.5-2.7%		
Integrated luminosity	2.5%	2.5%		
Trigger efficiency	0.5–1.4%	0.4 - 1.4%		
Pileup	0.3–1.4%	0.3-1.5%		
Muon identification	0.4–0.8%	0.4-0.7%		
PDFs	0.6–0.7%	1.0-1.4%		
Jet b tagging (light-flavour jets)	0.3%	0.3-0.4%		
Muon isolation	0.2–0.3%	0.1-0.2%		
Jet energy scale	<0.1–0.3%	0.7-1.0%		
Jet energy resolution	0.1%	< 0.1%		
Affecting only $t\bar{t}$ (85.1–95.7% of the total bkg.)				
$u_{\rm R}$ and $u_{\rm E}$ scales	12.8–12.9%			
tt cross section	5.2%			
Simulated sample size	<0.1%			
Affecting only DY in	$e^{\pm}u^{\mp}$ channel (0.9% of the tota	al bkg)		
$u_{\rm P}$ and $u_{\rm F}$ scales	24 6–24 7%			
Simulated sample size	77-11.6%			
DY cross section	4 9%			
	1.970			
Affecting only DY estimate from data in same-flavour events (7.1–10.7% of the total bkg.)				
Simulated sample size	18.8–19.0%			
Normalisation	5.0%			
Affecting only single	top quark (2.5–2.9% of the tota	al bkg.)		
Single t cross section	7.0%			
Simulated sample size	< 0.1 - 1.0%			
$\mu_{\rm R}$ and $\mu_{\rm F}$ scales	< 0.1 – 0.2%			
Affecting only signal	SM signal	$m_{\rm Y} = 400 {\rm GeV}$		
$u_{\rm P}$ and $u_{\rm E}$ scales	24.2%	4.6-4.7%		
Simulated sample size	<0.1%	<0.1%		